【題目】綜合與探究:
如圖1,拋物線與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),頂點(diǎn)為,為對(duì)稱軸右側(cè)拋物線的一個(gè)動(dòng)點(diǎn),直線與軸于點(diǎn),過(guò)點(diǎn)作,交軸于點(diǎn).
(1)求直線的函數(shù)表達(dá)式及點(diǎn)的坐標(biāo);
(2)如圖2,當(dāng)軸時(shí),將以每秒1個(gè)單位長(zhǎng)度的速度沿軸的正方向平移,當(dāng)點(diǎn)與點(diǎn)重合時(shí)停止平移.設(shè)平移秒時(shí),在平移過(guò)程中與四邊形重疊部分的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)如圖3,過(guò)點(diǎn)作軸的平行線,交直線于點(diǎn),直線與交于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為.
①當(dāng)時(shí),求的值;
②試探究點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在值,使四邊形是菱形?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1),;(2)當(dāng)時(shí),;當(dāng)時(shí),;(3)①或,②
【解析】
(1)先通過(guò)拋物線函數(shù)關(guān)系式求出與x軸的兩個(gè)交點(diǎn)A、B的坐標(biāo)以及頂點(diǎn)D的坐標(biāo),再利用待定系數(shù)可求得直線AD的函數(shù)表達(dá)式,令x=0,即可求得點(diǎn)C的坐標(biāo);
(2)先求出點(diǎn)P坐標(biāo),通過(guò)平移可求得,從而可得OF的長(zhǎng)為,當(dāng)時(shí),重疊部分為△AOC,求出△AOC的面積即可,當(dāng)時(shí),平移秒到的位置,交于點(diǎn),如圖,重疊部分為四邊形,根據(jù)結(jié)合相似三角形的性質(zhì)可表示出的長(zhǎng),再根據(jù)四邊形的面積=的面積-的面積即可求出關(guān)于的函數(shù)關(guān)系式;
(3)①過(guò)點(diǎn)作軸于點(diǎn),交于點(diǎn),利用點(diǎn)P、D的坐標(biāo)表示出DN、NQ的長(zhǎng),再根據(jù)平行得,結(jié)合列出方程求解即可;
②當(dāng)點(diǎn)P在第一象限時(shí),過(guò)點(diǎn)P作PG⊥x軸于點(diǎn)G,易證△PGF∽△COA,故可設(shè)PG=4k,FG=3k,由勾股定理得PF=5k,由菱形得AF=PF=5k,故可表示出點(diǎn)P坐標(biāo),將點(diǎn)P坐標(biāo)代入拋物線函數(shù)關(guān)系式列出方程求解即可,當(dāng)點(diǎn)P在第四象限時(shí),同理可得點(diǎn)P坐標(biāo).
解:(1),
當(dāng)時(shí),,解得,
∵點(diǎn)在點(diǎn)的左側(cè),
∴,
∵,即,
∴,
設(shè)直線的函數(shù)表達(dá)式為,
∵直線過(guò)點(diǎn),
∴,解得,
∴,
當(dāng)時(shí),,
∴.
(2)當(dāng)時(shí),,
解得:,
∵點(diǎn)在拋物線對(duì)稱軸的右側(cè),
∴ ,
∴,
∴,
當(dāng)時(shí),
,
當(dāng)時(shí),平移秒到的位置,交于點(diǎn),如圖,
則,
∵,
∴,
又∵,
∴,
∴,即,
∴,
∴
=
.
綜上所述,當(dāng)時(shí),;
當(dāng)時(shí),;
(3)①如圖,過(guò)點(diǎn)作軸于點(diǎn),交于點(diǎn).
∵點(diǎn)的橫坐標(biāo)為,
∴,
∵,
∴,
,
∵軸,
∴,
當(dāng)時(shí),,
∴,即,
當(dāng)時(shí),
,
∵點(diǎn)在拋物線對(duì)稱軸的右側(cè),
∴;
當(dāng)時(shí),
,
∵點(diǎn)在拋物線對(duì)稱軸的右側(cè),
∴,
綜上所述,或,
②如圖,當(dāng)點(diǎn)P在第一象限時(shí),過(guò)點(diǎn)P作PG⊥x軸于點(diǎn)G,
∵PF∥AC,
∴∠PFG=∠CAO
又∵∠PGF=∠COA=90°,
∴△PGF∽△COA,
∴,
∴,
∴,
∴設(shè)PG=4k,FG=3k,則PF=5k,
∵四邊形是菱形
∴AF=PF=5k,
又∵點(diǎn)A(-2,0),
∴點(diǎn)P(-2+8k,4k)
∵點(diǎn)P在拋物線的圖像上,
∴,
整理得
解得(舍去)
∴
∴點(diǎn)P的坐標(biāo)為,
如圖,當(dāng)點(diǎn)P在第四象限時(shí),過(guò)點(diǎn)P作PK⊥x軸于點(diǎn)K,
∵PF∥AC,
∴∠PFK=∠CAO,
又∵∠PKF=∠COA=90°,
∴△PKF∽△COA,
∴,
∴,
∴,
∴設(shè)PK=4a,FK=3a,則PF=5a,
∵四邊形是菱形
∴AF=PF=5a,
又∵點(diǎn)A(-2,0),
∴點(diǎn)P(-2+2a,-4a)
∵點(diǎn)P在拋物線的圖像上,
∴,
整理得
解得(舍去)
∴
∴點(diǎn)P的坐標(biāo)為,
綜上所述,存在,使四邊形是菱形,此時(shí)點(diǎn)的坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間,則下列結(jié)論:①4a﹣2b+c>0;②3a+b>0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有兩個(gè)互異實(shí)根.其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖,大樓AN上懸掛一條幅AB,小穎在坡面D處測(cè)得條幅頂部A的仰角為30°,沿坡面向下走到坡腳E處,然后向大樓方向繼續(xù)行走10米來(lái)到C處,測(cè)得條幅的底部B的仰角為45°,此時(shí)小穎距大樓底端N處20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A在同一平面內(nèi),E、C、N在同一條直線上,求條幅的長(zhǎng)度(結(jié)果精確到1米)(參考數(shù)據(jù):≈1.73,≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=4,以AB為直徑的⊙O交BC于點(diǎn)D,交AC于點(diǎn)E,點(diǎn)P是AB的延長(zhǎng)線上一點(diǎn),且∠PDB=∠A,連接DE,OE.
(1)求證:PD是⊙O的切線.
(2)填空:①當(dāng)∠P的度數(shù)為______時(shí),四邊形OBDE是菱形;
②當(dāng)∠BAC=45°時(shí),△CDE的面積為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象與一次函數(shù)的圖象在第一象限交于兩點(diǎn),一次函數(shù)的圖象與軸交于點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)當(dāng)為何值時(shí),?
(3)已知點(diǎn),過(guò)點(diǎn)作軸的平行線,在第一象限內(nèi)交一次函數(shù)的圖象于點(diǎn),交反比例函數(shù)的圖象于點(diǎn).結(jié)合函數(shù)圖象直接寫出當(dāng)時(shí)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△DCB中,AB=DC,∠A=∠D,AC、DB交于點(diǎn)M.
(1)求證:△ABC≌△DCB;
(2)作CN∥BD,BN∥AC,CN交BN于點(diǎn)N,四邊形BNCM是什么四邊形?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是雙曲線上的一個(gè)動(dòng)點(diǎn),連接并延長(zhǎng)交雙曲線于點(diǎn)將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段若點(diǎn)在雙曲線上運(yùn)動(dòng),則_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,EF,EB是⊙O的弦,且EF=EB,EF與AB交于點(diǎn)C,連接OF,若∠AOF=40°,則∠F的度數(shù)是( )
A.20°B.35°C.40°D.55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是 ( )
A.要調(diào)查現(xiàn)在人們?cè)跀?shù)學(xué)化時(shí)代的生活方式,宜采用普查方式
B.一組數(shù)據(jù)3,4,4,6,8,5的中位數(shù)是4
C.必然事件的概率是100%,隨機(jī)事件的概率大于0而小于1
D.若甲組數(shù)據(jù)的方差=0.128,乙組數(shù)據(jù)的方差=0.036,則甲組數(shù)據(jù)更穩(wěn)定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com