【題目】校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載,某中學(xué)數(shù)學(xué)活動小組設(shè)計(jì)了如下檢測公路上行駛的汽車速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車道l上確定點(diǎn)D,使CD與l垂直,測得CD的長等于24米,在l上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的長(結(jié)果保留根號);
(2)已知本路段對校車限速為45千米/小時(shí),若測得某輛校車從A到B用時(shí)1.5秒,這輛校車是否超速?說明理由.(參考數(shù)據(jù):≈1.7,≈1.4)
【答案】(1) ;(2)此校車在AB路段超速,理由見解析.
【解析】
(1)結(jié)合三角函數(shù)的計(jì)算公式,列出等式,分別計(jì)算AD和BD的長度,計(jì)算結(jié)果,即可。(2)在第一問的基礎(chǔ)上,結(jié)合時(shí)間關(guān)系,計(jì)算速度,判斷,即可。
解:(1)由題意得,在Rt△ADC中,tan30°==,
解得AD=24.
在 Rt△BDC 中,tan60°==,
解得BD=8
所以AB=AD﹣BD=24﹣8=16(米).
(2)汽車從A到B用時(shí)1.5秒,所以速度為16÷1.5≈18.1(米/秒),
因?yàn)?/span>18.1(米/秒)=65.2千米/時(shí)>45千米/時(shí),
所以此校車在AB路段超速.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線C:y=ax2﹣2ax+3與直線l:y=kx+b交于A,B兩點(diǎn),且點(diǎn)A在y軸上,點(diǎn)B在x軸的正半軸上.
(1)求點(diǎn)A的坐標(biāo);
(2)若a=﹣1,求直線l的解析式;
(3)若﹣3<k<﹣1,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點(diǎn)以2cm/秒的速度在線段AB上由A向B勻速運(yùn)動,E點(diǎn)同時(shí)以1cm/秒的速度在線段BC上由B向C勻速運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)設(shè)四邊形AFEC的面積為y,求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=4,BC=4,∠D=30°,點(diǎn)E是BC邊的中點(diǎn),F是射線BA上一動點(diǎn),將△BEF沿直線EF折疊,得到△PEF,連接PC,當(dāng)△PCE為等邊三角形時(shí),BF的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(0,3),C(2,n)兩點(diǎn),直線l:y=x+2過C點(diǎn),且與y軸交于點(diǎn)B,拋物線上有一動點(diǎn)E,過點(diǎn)E作直線EF⊥x軸于點(diǎn)F,交直線BC于點(diǎn)D
(1)求拋物線的解析式.
(2)如圖1,當(dāng)點(diǎn)E在直線BC上方的拋物線上運(yùn)動時(shí),連接BE,BF,是否存在點(diǎn)E使直線BC將△BEF的面積分為2:3兩部分?若存在,求出點(diǎn)E的坐標(biāo),若不存在說明理由;
(3)如圖2,若點(diǎn)E在y軸右側(cè)的拋物線上運(yùn)動,連接AE,當(dāng)∠AED=∠ABC時(shí),直接寫出此時(shí)點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=110°,△ADE的頂點(diǎn)D在BC上,且∠DAE=90°,AD=AE,則∠BAD-∠EDC的度數(shù)為( )
A.17.5°B.12.5°C.12°D.10°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)(x>0)經(jīng)過點(diǎn)A(2,3)和點(diǎn)B(點(diǎn)B在點(diǎn)A的右側(cè)),作BC⊥y軸,垂足為點(diǎn)C,連結(jié)AB,AC,AO,BO.
(1)求反比例函數(shù)的解析式;
(2)若∠ACB=45°,求直線AB的解析式;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn),與軸交于點(diǎn),.
(1)求這個(gè)拋物線的解析式;
(2)將以每秒一個(gè)單位的速度沿軸向右平移,平移時(shí)間為秒,平移后的與重疊部分的面積為,與重合時(shí)停止平移,求與的函數(shù)關(guān)系式;
(3)點(diǎn)在軸上,連接,點(diǎn)關(guān)于直線的對稱點(diǎn)為,若點(diǎn)落在這個(gè)拋物線的對稱軸上,請直接寫出所有符合條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為a,E.F分別是邊AD、BC的中點(diǎn),點(diǎn)G在CD上.且,DF、EG相交于點(diǎn)H.
(1)求出的值;
(2)求證:EG⊥DF;
(3)過點(diǎn)H作MN∥CD,分別交AD、BC于點(diǎn)M、N,點(diǎn)P是MN上一點(diǎn),當(dāng)點(diǎn)P在什么位置時(shí),△PDC的周長最小,并求△PDC周長的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com