【題目】如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設(shè)運動時間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)設(shè)四邊形AFEC的面積為y,求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最小值.
【答案】(1)證明見解析(2)6.4cm(3)當(dāng)t=時,y的最小值為19
【解析】試題分析:(1)由CD∥AB,得∠DCA=∠CAB,加上一組直角,即可證得所求的三角形相似;
(2)在Rt△ABC中,由勾股定理可求得AC的長,根據(jù)(1)題所得相似三角形的比例線段,即可求出DC的長;
(3)分析圖象可知:四邊形AFEC的面積可由△ABC、△BEF的面積差求得,分別求出兩者的面積,即可得到y、t的函數(shù)關(guān)系式,進而可根據(jù)函數(shù)的性質(zhì)及自變量的取值范圍求出y的最小值.
(1)∵CD∥AB
∴∠BAC=∠DCA
又∵AC⊥BC,∠ACB=90o
∴∠D="∠ACB=" 90o
∴△ACD∽△BAC;
(2)
∵△ACD∽△BAC
∴,即,解得:
(3)過點E作AB的垂線,垂足為G,
∴△ACB∽△EGB
∴即,解得
==
故當(dāng)t=時,y的最小值為19
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=60°,AC與BD交于點O,E為CD延長線上的一點,且CD=DE,連接BE分別交AC、AD于點F、G,連接OG,則下列結(jié)論中一定成立的是( )
①OG=AB;②與△EGD全等的三角形共有5個;③S四邊形ODGF>S△ABF;④由點A、B、D、E構(gòu)成的四邊形是菱形.
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用如圖所示的曲尺形框框(有三個方向),可以套住下表中的三個數(shù),設(shè)被框住的三個數(shù)中最小的數(shù)為a.
⑴用含a的式子表示這三個數(shù)的和;
⑵若這三個數(shù)的和是48,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段AC和BC在同一直線上,AC=8cm,BC=3cm,則線段AC的中點和BC中點之間的距離是( 。
A.5.5cmB.2.5cm
C.4cmD.5.5cm或2.5cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在數(shù)軸上有A,B兩點,所表示的數(shù)分別為-10,4,點A以每秒5個單位長度的速度向右運動,同時點B以每秒3個單位長度的速度也向左運動,如果設(shè)運動時間為t秒,解答下列問題:
(1)運動前線段AB的長為 ; 運動1秒后線段AB的長為 ;
(2)運動t秒后,點A,點B運動的距離分別為 ;用t表示A,B分別為 .
(3)求t為何值時,點A與點B恰好重合;
(4)在上述運動的過程中,是否存在某一時刻t,使得線段AB的長為6,若存在,求t的值; 若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們經(jīng)濟收入的不斷提高,汽車已越來越多地進入到各個家庭.某大型超市為緩解停車難問題,建筑設(shè)計師提供了樓頂停車場的設(shè)計示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標(biāo)志,以便告知車輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃購買A,B兩種型號的機器人搬運材料.已知A型機器人比B型機器人每小時多搬運30kg材料,且A型機器人搬運1000kg材料所用的時間與B型機器人搬運800kg材料所用的時間相同.
(1)求A,B兩種型號的機器人每小時分別搬運多少材料;
(2)該公司計劃采購A,B兩種型號的機器人共20臺,要求每小時搬運材料不得少于2800kg,則至少購進A型機器人多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點A作⊙O的切線交OC的延長線于點D,交BC的延長線于點E.
(1)求證:∠DAC=∠DCE;
(2)若AB=2,sin∠D=,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com