【題目】對一張矩形紙片ABCD進行折疊,具體操作如下:
第一步:先對折,使AD與BC重合,得到折痕MN,展開;
第二步:再一次折疊,使點A落在MN的點A′處,并使折痕經(jīng)過點B,得到折痕BE,同時,得到線段BA′,EA′,展開,如圖1;
第三步:再沿EA′所在的直線折疊,點B落在AD的點B′處,得到折痕EF,同時得到線段B′F,展開,如圖2.
(1)證明:∠ABE=30°;
(2)證明:四邊形BFB′E為菱形.
【答案】見解析
【解析】
(1)根據(jù)點M是AB的中點判斷出A′是EF的中點,然后判斷出BA′垂直平分EF,根據(jù)線段垂直平分線上的點到兩端點的距離相等可得BE=BF,再根據(jù)等腰三角形三線合一的性質(zhì)可得∠A′BE=∠A′BF,根據(jù)翻折的性質(zhì)可得∠ABE=∠A′BE,然后根據(jù)矩形的四個角都是直角計算即可得證;
(2)根據(jù)翻折變換的性質(zhì)可得BE=B′E,BF=B′F,然后求出BE=B′E=B′F=BF,再根據(jù)四條邊都相等的四邊形是菱形證明.
(1)∵對折AD與BC重合,折痕是MN,
∴點M是AB的中點,
∴A′是EF的中點,
∵∠BA′E=∠A=90°,
∴BA′垂直平分EF,
∴BE=BF,
∴∠A′BE=∠A′BF,
由翻折的性質(zhì),∠ABE=∠A′BE,
∴∠ABE=∠A′BE=∠A′BF,
∴∠ABE= ×90°=30°;
(2)∵沿EA′所在的直線折疊,點B落在AD上的點B′處,
∴BE=B′E,BF=B′F,
∵BE=BF,
∴BE=B′E=B′F=BF,
∴四邊形BFB′E為菱形。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】天水市某企業(yè)接到一批粽子生產(chǎn)任務(wù),按要求在19天內(nèi)完成,約定這批粽子的出廠價為每只4元,為按時完成任務(wù),該企業(yè)招收了新工人,設(shè)新工人李紅第x天生產(chǎn)的粽子數(shù)量為y只,y與x滿足如下關(guān)系:.
(1)李紅第幾天生產(chǎn)的粽子數(shù)量為260只?
(2)如圖,設(shè)第x天生產(chǎn)的每只粽子的成本是p元,p與x之間的關(guān)系可用圖中的函數(shù)圖象來刻畫,若李紅第x天創(chuàng)造的利潤為w元,求w與x之間的函數(shù)表達式,并求出第幾天的利潤最大?最大利潤是多少元?(利潤=出廠價﹣成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關(guān)系圖象,則a的值為( )
A. B. 2 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC中,AB=AC,點E是邊AC上一點,過點E作EF∥BC交AB于點F
(1)如圖①,求證:AE=AF;
(2)如圖②,將△AEF繞點A逆時針旋轉(zhuǎn)α(0°<α<144°)得到△AE′F′.連接CE′BF′.
①若BF′=6,求CE′的長;
②若∠EBC=∠BAC=36°,在圖②的旋轉(zhuǎn)過程中,當CE′∥AB時,直接寫出旋轉(zhuǎn)角α的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校6名教師和234名學(xué)生集體外出活動,準備租用45座大車或30座小車.若租用1輛大車2輛小車共需租車費1000元;若租用2輛大車一輛小車共需租車費1100元.
(1)求大、小車每輛的租車費各是多少元?
(2)若每輛車上至少要有一名教師,且總租車費用不超過2300元,求最省錢的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2-4x+3與x軸相交于點A,B(點A在點B左側(cè)),頂點為M.平移該拋物線,使點M平移后的對應(yīng)點M'落在x軸上,點B平移后的對應(yīng)點B'落在y軸上.則平移后的拋物線解析式為 ( )
A. y=x2+2x+1 B. y=x2+2x-1 C. y=x2-2x+1 D. y=x2-2x-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,Rt△ABC的三個頂點A(-2,2),B(0,5),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請畫出△A1B1C的圖形.
(2)平移△ABC,使點A的對應(yīng)點A2坐標為(-2,-6),請畫出平移后對應(yīng)的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點旋轉(zhuǎn)可得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com