精英家教網 > 初中數學 > 題目詳情

【題目】已知關于x的一元二次方程x2+2x﹣a=0有兩個相等的實數根,則a的值是

【答案】﹣1
【解析】解:根據題意得△=22﹣4×(﹣a)=0,
解得a=﹣1.
所以答案是﹣1.
【考點精析】掌握求根公式是解答本題的根本,需要知道根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數根2、當△=0時,一元二次方程有2個相同的實數根3、當△<0時,一元二次方程沒有實數根.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,點P( x, y1)與Q (x, y2)分別是兩個函數圖象C1C2上的任一點. 當a x b時,有-1 ≤ y1 - y2 ≤ 1成立,則稱這兩個函數在a x b上是“相鄰函數”,否則稱它們在a x b上是“非相鄰函數”.

例如,點P(x, y1)與Q (x, y2)分別是兩個函數y = 3x+1與y = 2x - 1圖象上的任一點,當-3 ≤ x ≤ -1時,y1 - y2 = (3x + 1) - (2x - 1) = x + 2,通過構造函數y = x + 2并研究該函數在-3 ≤ x ≤ -1上的性質,得到該函數值的范圍是-1 ≤ y ≤ 1,所以-1 ≤ y1 - y2 ≤ 1成立,因此這兩個函數在-3 ≤ x ≤ -1上是“相鄰函數”.

(1)判斷函數y = 3x + 2與y = 2x + 1在-2 ≤ x≤ 0上是否為“相鄰函數”,說明理由;

(2)若函數y = x2 - xy = x - a在0 ≤ x ≤ 2上是“相鄰函數”,求a的取值范圍;

(3)若函數y =y =-2x + 4在1 ≤ x ≤ 2上是“相鄰函數”,直接寫出a的最大值與最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知四邊形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=3,以頂點D為圓心作半徑為r的圓,若點A,B,C中至少有一個點在圓內,且至少有一個點在圓外,則r的值可以是下列選項中的( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠ ACB=90°BC=2,將ACB繞點C逆時針旋轉60°得到DCEADBE分別是對應頂點),若AEBC,則ADE的周長為_________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD中,AB=AC,點E、F分別為邊AB、BC上的點,且AE=BF,連接CE、AF交于點H,連接DH交AG于點O.則下列結論①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH中,正確的是( 。

A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】放學時,王老師布置了一道因式分解題:(xy)2+4(xy)2-4(x2y2),小明思考了半天,沒有得出答案.請你幫小明解決這個問題.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】多項式3x|m|y2+(m+2)x2y﹣1是四次三項式,則m的值為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某新建火車站站前廣場需要綠化的面積為46000米2,施工隊在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結果提前4天完成了該項綠化工程.

(1)該項綠化工程原計劃每天完成多少米2?

(2)該項綠化工程中有一塊長為20米,寬為8米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?

查看答案和解析>>

同步練習冊答案