【題目】小宇在學(xué)習(xí)解直角三角形的知識后,萌生了測量他家對面位于同一水平面的樓房高度的想法,他站在自家C處測得對面樓房底端B的俯角為45°,測得對面樓房頂端A的仰角為30°,并量得兩棟樓房間的距離為9米,請你用小宇測得的數(shù)據(jù)求出對面樓房AB的高度.(結(jié)果保留到整數(shù),參考數(shù)據(jù):1.4,1.7

【答案】樓房AB的高度約為14米.

【解析】

利用直角三角形特殊函數(shù)值進(jìn)行求解即可,在RtADC中,tanACD=,繼而求出AD,在RtADB中,tanBCD=,繼而求出BD=CD=9,繼而即可求解.

解:在RtADC中,tanACD=,

AD=DCtanACD=9×=米,

RtADB中,tanBCD=,

BD=CD=9米,

AB=AD+BD=+914米.

答:樓房AB的高度約為14米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形OABC的頂點Ax軸上,OC=4,∠AOC=60°,且以點O為圓心,任意長為半徑畫弧,分別交OAOC于點D、E;再分別以點D、點E為圓心,大于DE的長度為半徑畫弧,兩弧相交于點F,過點O作射線OF,交BC于點P.則點P的坐標(biāo)為( )

A.(4,2)B.(6,2)C.(2,4)D.(26)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀對學(xué)生的成長有著深遠(yuǎn)的影響.某中學(xué)為了解學(xué)生每周課余閱讀的時間,在本校隨機(jī)抽取若干名學(xué)生進(jìn)行調(diào)查,并依據(jù)調(diào)查結(jié)果經(jīng)制了以下不完整的統(tǒng)計圖表.

組別

時間(小時)

頻數(shù)(人數(shù))

頻率

A

6

B

C

10

D

8

E

4

合計

1

請根據(jù)圖表中的信息,解答下列問題:

1)表中的 , ,將頻數(shù)分布直方圖補(bǔ)全;

2)估計該校2000名學(xué)生中,每周課余閱讀時間不足1小時的學(xué)生大約有多少名?

3組的4人中,有1名男生和3名女生,該校計劃在組學(xué)生中隨機(jī)選出兩人向全校同學(xué)作讀書心得報告,求抽取的兩名學(xué)生剛好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線Gy1ax+12+2Hy2=﹣(x221交于點B(1,﹣2),且分別與y軸交于點D、E.過點Bx軸的平行線,交拋物線于點A、C,則以下結(jié)論:①無論x取何值,y2總是負(fù)數(shù);②拋物線H可由拋物線G向右平移3個單位,再向下平移3個單位得到;③當(dāng)﹣3x1時,隨著x的增大,y1y2的值先增大后減。虎芩倪呅AECD為正方形.其中正確的是( 。

A.①③④B.①②④C.②③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線x軸于A﹣1,0)和B5,0)兩點,交y軸于點C,點D是線段OB上一動點,連接CD,將線段CD繞點D順時針旋轉(zhuǎn)90°得到線段DE,過點E作直線l⊥x軸于H,過點CCF⊥lF

1)求拋物線解析式;

2)如圖2,當(dāng)點F恰好在拋物線上時,求線段OD的長;

3)在(2)的條件下:

連接DF,求tan∠FDE的值;

試探究在直線l上,是否存在點G,使∠EDG=45°?若存在,請直接寫出點G的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級男生的體能情況,體育老師從中隨機(jī)抽取部分男生進(jìn)行引體向上測試,并對成績進(jìn)行了統(tǒng)計,繪制成尚不完整的扇形圖和條形圖,根據(jù)圖形信息回答下列問題:

(1)本次抽測的男生有________人,抽測成績的眾數(shù)是_________;

(2)請將條形圖補(bǔ)充完整;

(3)若規(guī)定引體向上6次以上(含6次)為體能達(dá)標(biāo),則該校125名九年級男生中估計有多少人體能達(dá)標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的半徑是2,點A,B在⊙O上,且∠AOB90°,動點C在⊙O上運(yùn)動(不與A,B重合),點D為線段BC的中點,連接AD,則線段AD的長度最大值是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△OAB中,∠AOB90°,AO2BO4.將△OAB繞頂點O按順時針方向旋轉(zhuǎn)到△OA1B1處,此時線段OB1AB的交點D恰好為線段AB的中點,線段A1B1OA交于點E,則圖中陰影部分的面積__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與軸交于點、,與軸交于點

1)求二次函數(shù)的解析式;

2)若點為拋物線上的一點,點為對稱軸上的一點,且以點、、為頂點的四邊形為平行四邊形,求點的坐標(biāo);

3)點是二次函數(shù)第四象限圖象上一點,過點軸的垂線,交直線于點,求四邊形面積的最大值及此時點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案