【題目】A、B兩個港口相距100海里,港口B在港口A的北偏東31°方向上,有一艘船從A港口出發(fā),沿北偏西44°方向勻速行駛3小時后,到達(dá)位于B港口南偏西76°方向的C處.求此船行駛的速度(結(jié)果精確到1海里/時,參考數(shù)據(jù):≈1.414,≈1.732,≈2.449)
【答案】27海里/時
【解析】
利用方向角的定義得到∠1=∠2=31°,則∠BAC=31°+44°=75°,∠ABC=76°﹣31°=45°,在利用三角形內(nèi)角和得到∠ACB=60°,作AH⊥BC于H,如圖,在Rt△ABH中,利用等腰直角三角形的性質(zhì)得BH=AH=50在Rt△ACH中,利用含30度的直角三角形三邊的關(guān)系得到CH=AH=,AC=2CH=,然后計(jì)算此船行駛的速度.
根據(jù)題意得∠1=∠2=31°,
∠BAC=31°+44°=75°,∠ABC=76°﹣31°=45°,
∴∠ACB=180°﹣75°﹣45°=60°,
作AH⊥BC于H,如圖,
在Rt△ABH中,BH=AH=AB=50,
在Rt△ACH中,CH=AH=×50=,
AC=2CH=,
∴此船行駛的速度==≈27.
答:此船行駛的速度為27海里/時.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠A=60°,AB=6厘米,BC=12厘米,點(diǎn)P、Q同時從 頂點(diǎn)A出發(fā),點(diǎn)P沿A→B→C→D方向以2厘米/秒的速度前進(jìn),點(diǎn)Q沿A→D方向以1厘米/秒的速度前進(jìn),當(dāng)Q到達(dá)點(diǎn)D時,兩個點(diǎn)隨之停止運(yùn)動.設(shè)運(yùn)動時間為x秒,P、Q經(jīng)過的路徑與線段PQ圍成的圖形的面積為y(cm2),則y與x的函數(shù)圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實(shí)數(shù)根.
其中正確結(jié)論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某區(qū)2018年初中畢業(yè)生畢業(yè)后的去向,某區(qū)教育部門對部分初三學(xué)生進(jìn)行了抽樣調(diào)查,就初三學(xué)生的四種去向(A,讀普通高中;B,讀職業(yè)高中;C,直接進(jìn)入社會就業(yè);D,其它)進(jìn)行數(shù)據(jù)統(tǒng)計(jì),并繪制了兩幅不完整的統(tǒng)計(jì)圖(a)、(b).請問:
(1)此次共調(diào)查了多少名初中畢業(yè)生?
(2)將兩幅統(tǒng)計(jì)圖中不完整的部分補(bǔ)充完整;
(3)若某區(qū)2018年初三畢業(yè)生共有3500人,請估計(jì)2019年初三畢業(yè)生中讀普通高中的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1,x2是一元二次方程x2﹣3x+1=0的兩實(shí)數(shù)根,則的值是( 。
A. ﹣7B. ﹣1C. 1D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某車間有22名工人,每人每天可生產(chǎn)1200個螺釘或2000個螺母,1個螺釘需配2個螺母,為使生產(chǎn)的螺釘和螺母剛好配套,若設(shè)x名工人生產(chǎn)螺釘,依題意列方程為( )
A. 1200x=2000(22-x) B. 1200x=22000(22-x)
C. 1200(22-x)=2000x D. 21200x=2000(22-x)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了創(chuàng)建書香校園,去年購買了一批圖書.其中科普書的單價比文學(xué)書的單價多8元,用1800元購買的科普書的數(shù)量與用l000元購買的文學(xué)書的數(shù)量相同.
(1)求去年購買的文學(xué)書和科普書的單價各是多少元;
(2)這所學(xué)校今年計(jì)劃再購買這兩種文學(xué)書和科普書共200本,且購買文學(xué)書和科普書的總費(fèi)用不超過2088元.今年文學(xué)書的單價比去年提高了20%,科普書的單價與去年相同,且每購買1本科普書就免費(fèi)贈送1本文學(xué)書,求這所學(xué)校今年至少要購買多少本科普書?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸為直線x=1的拋物線經(jīng)過A(﹣1,0)、C(0,3)兩點(diǎn),與x軸的另一個交點(diǎn)為B,點(diǎn)D在y軸上,且OB=3OD
(1)求該拋物線的表達(dá)式;
(2)設(shè)該拋物線上的一個動點(diǎn)P的橫坐標(biāo)為t
①當(dāng)0<t<3時,求四邊形CDBP的面積S與t的函數(shù)關(guān)系式,并求出S的最大值;
②點(diǎn)Q在直線BC上,若以CD為邊,點(diǎn)C、D、Q、P為頂點(diǎn)的四邊形是平行四邊形,請求出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[問題提出]
如圖①,在△ABC中,若AB=6,AC=4,求BC邊上的中線AD的取值范圍.
[問題解決]
解決此問題可以用如下方法,延長AD到點(diǎn)E使DE=AD,再連結(jié)BE(或?qū)?/span>△ACD繞著點(diǎn)D逆時針裝轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷,由此得出中線AD的取值范圍是
[應(yīng)用]
如圖②,如圖,在△ABC中,D為邊BC的中點(diǎn),已知AB=5,AC=3,AD=2.求BC的長
[拓展]
如圖③,在△ABC中,∠A=90°,點(diǎn)D是邊BC的中點(diǎn),點(diǎn)E在邊AB上,過點(diǎn)D作DF⊥DE交邊AC于點(diǎn)F,連結(jié)EF,已知BE=4,CF=5,則EF的長為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com