【題目】某周日上午8:00小宇從家出發(fā),乘車1小時到達某活動中心參加實踐活動.11:00時他在活動中心接到爸爸的電話,因急事要求他在12:00前回到家,他即刻按照來活動中心時的路線,以5千米/小時的平均速度快步返回.同時,爸爸從家沿同一路線開車接他,在距家20千米處接上了小宇,立即保持原來的車速原路返回.設(shè)小宇離家x(小時)后,到達離家y(千米)的地方,圖中折線OABCD表示y與x之間的函數(shù)關(guān)系.

(1)活動中心與小宇家相距 千米,小宇在活動中心活動時間為 小時,他從活動中心返家時,步行用了 小時;

(2)求線段BC所表示的y(千米)與x(小時)之間的函數(shù)關(guān)系式(不必寫出x所表示的范圍);

(3)根據(jù)上述情況(不考慮其他因素),請判斷小宇是否能在12:00前回到家,并說明理由.

【答案】(1)22;2;0.4.(2)y=﹣5x+37.(3)能.

【解析】

試題分析:(1)根據(jù)點A、B坐標結(jié)合時間=路程÷速度,即可得出結(jié)論;

(2)根據(jù)離家距離=22速度×時間,即可得出y與x之間的函數(shù)關(guān)系式;

(3)由小宇步行的時間等于爸爸開車接到小宇的時間結(jié)合往返時間相同,即可求出小宇從活動中心返家所用時間,將其與1比較后即可得出結(jié)論.

試題解析:(1)點A的坐標為(1,22),點B的坐標為(3,22),

活動中心與小宇家相距22千米,小宇在活動中心活動時間為3﹣1=2小時.

(22﹣20)÷5=0.4(小時).

(2)根據(jù)題意得:y=22﹣5(x﹣3)=﹣5x+37.

(3)小宇從活動中心返家所用時間為:0.4+0.4=0.8(小時),

0.81,

小宇12:00前能到家.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AC=8,BC=6.

(1)尺規(guī)作圖:作BAC的角平分線AD(保留作圖痕跡,不寫作法);

(2)求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,點O是對角線AC的中點,點MBC上一點,連接AM,且AB=AM,點EBM中點,AFAB,連接EF,延長FOAB于點N.

(1)若BM=4,MC=3,AC=,求AM的長度;

(2)若∠ACB=45°,求證:AN+AF=EF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=kx+b()與y=-4x()的圖像相交于點P(1,n),C(3,2)在一次函數(shù)圖像上

⑴求kb的值;

⑵直接寫出kx+b>-4x的解集

⑶連接OC,求三角形OPC的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中描出點 A(﹣2,0)、B(3,1)、C(2,3),將各點用線段依次 連接起來,并解答如下問題:

(1)在平面直角坐標系中畫出 A′B′C′,使它與 ABC 關(guān)于 x 軸對稱,并直接寫出 A′B′C′三個頂點的坐標;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實驗探究:
(1)如圖1,對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開;再一次折疊紙片,使點A落在EF上,并使折痕經(jīng)過點B,得到折痕BM,同時得到線段BN,MN.請你觀察圖1,猜想∠MBN的度數(shù)是多少,并證明你的結(jié)論.
(2)將圖1中的三角形紙片BMN剪下,如圖2,折疊該紙片,探究MN與BM的數(shù)量關(guān)系,寫出折疊方案,并結(jié)合方案證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下列證明過程:

如圖,∠1=∠2,AC平分∠DAB.

求證:DC∥AB.

證明:因為AC平分∠DAB(已知),

所以∠1=∠3(_____________ ).

又因為∠1=∠2(____________),

所以∠2=∠3(______________),

所以DC∥AB(________________).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知Rt△ABC,∠C=90°,D為BC的中點,以AC為直徑的⊙O交AB于點E.
(1)求證:DE是⊙O的切線;
(2)若AE:EB=1:2,BC=6,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學老師布置了一道思考題“計算:(-)÷()”,小明仔細思考了一番,用了一種不同的方法解決了這個問題.

小明的解法:原式的倒數(shù)為()÷()=()×(-12)=-4+10=6,所以(-)÷()=

(1)請你判斷小明的解答是否正確,并說明理由.

(2)請你運用小明的解法解答下面的問題.

計算:(-)÷(+).

查看答案和解析>>

同步練習冊答案