【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為,點(diǎn)是軸正半軸上一點(diǎn),且,點(diǎn)是軸上位于點(diǎn)右側(cè)的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)的坐標(biāo)為.
(1)點(diǎn)的坐標(biāo)為___________;
(2)當(dāng)是等腰三角形時(shí),求點(diǎn)的坐標(biāo);
(3)如圖2,過(guò)點(diǎn)作交線段于點(diǎn),連接,若點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,當(dāng)點(diǎn)恰好落在直線上時(shí),_____________.(直接寫出答案)
【答案】(1);(2)或或;(3)
【解析】
(1)根據(jù)勾股定理可以求出AO的長(zhǎng),則可得出A的坐標(biāo);
(2)分三種情況討論等腰三角形的情況,得出點(diǎn)P的坐標(biāo);
(3)根據(jù),點(diǎn)在直線上,得到,利用點(diǎn),關(guān)于直線對(duì)稱點(diǎn),根據(jù)對(duì)稱性,可證,可得,,
設(shè),則有,根據(jù)勾股定理,有:
解之即可.
解:(1)∵點(diǎn)坐標(biāo)為,點(diǎn)是軸正半軸上一點(diǎn),且,
∴是直角三角形,根據(jù)勾股定理有:
,
∴點(diǎn)的坐標(biāo)為;
(2)∵是等腰三角形,
當(dāng)時(shí),如圖一所示:
∴,
∴點(diǎn)的坐標(biāo)是;
當(dāng)時(shí),如圖二所示:
∴
∴點(diǎn)的坐標(biāo)是;
當(dāng)時(shí),如圖三所示:
設(shè),則有
∴根據(jù)勾股定理有:
即:
解之得:
∴點(diǎn)的坐標(biāo)是;
(3)當(dāng)是鈍角三角形時(shí),點(diǎn)不存在;
當(dāng)是銳角三角形時(shí),如圖四示:
連接,
∵,點(diǎn)在直線上,
∴和是直角三角形,
∴,
∵點(diǎn),關(guān)于直線對(duì)稱點(diǎn),
根據(jù)對(duì)稱性,有,
∴,
∴
則有:
∴是等腰三角形,則有,
∴,
設(shè),則有,
根據(jù)勾股定理,有:
即:
解之得:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)觀察猜想
如圖①點(diǎn)B、A、C在同一條直線上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數(shù)量關(guān)系為;
(2)問(wèn)題解決
如圖②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC為直角邊向外作等腰Rt△DAC,連結(jié)BD,求BD的長(zhǎng);
(3)拓展延伸
如圖③,在四邊形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,請(qǐng)直接寫出BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,D、E分別是BC、AC中點(diǎn),BF平分∠ABC.交DE于點(diǎn)F.AB=8,BC=6,則EF的長(zhǎng)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線形拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,則水面下降1m時(shí),水面寬度增加_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=mx2+(2﹣2m)x+m﹣2(m是常數(shù)).
(1)無(wú)論m取何值,該拋物線都經(jīng)過(guò)定點(diǎn) D.直接寫出點(diǎn)D的坐標(biāo).
(2)當(dāng)m取不同的值時(shí),該拋物線的頂點(diǎn)均在某個(gè)函數(shù)的圖象上,求出這個(gè)函數(shù)的表達(dá)式.
(3)若在0≤x≤1的范圍內(nèi),至少存在一個(gè)x的值,使y>0,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)過(guò)A(4,4),B(2,m)兩點(diǎn),點(diǎn)B到拋物線對(duì)稱軸的距離記為d,滿足0<d≤1,則實(shí)數(shù)m的取值范圍是( 。
A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2BO,AC=6,點(diǎn)B的坐標(biāo)為(1,0),拋物線y=﹣x2+bx+c經(jīng)過(guò)A、B兩點(diǎn).
(1)求點(diǎn)A的坐標(biāo);
(2)求拋物線的解析式;
(3)點(diǎn)P是直線AB上方拋物線上的一點(diǎn),過(guò)點(diǎn)P作PD垂直x軸于點(diǎn)D,交線段AB于點(diǎn)E,使PE=DE.
①求點(diǎn)P的坐標(biāo);
②在直線PD上是否存在點(diǎn)M,使△ABM為直角三角形?若存在,求出符合條件的所有點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,D是BC邊上一點(diǎn),E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于F,且AF=CD,連接CF.
(1)求證:△AEF≌△DEB;
(2)若AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中Rt△ABC的斜邊BC在x軸上,點(diǎn)B坐標(biāo)為(1,0),AC=2,∠ABC=30°,把Rt△ABC先繞B點(diǎn)順時(shí)針旋轉(zhuǎn)180°,然后再向下平移2個(gè)單位,則A點(diǎn)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為( 。
A. (﹣4,﹣2﹣) B. (﹣4,﹣2+) C. (﹣2,﹣2+) D. (﹣2,﹣2﹣)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com