【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長(zhǎng)AE至點(diǎn)F,使EF=AE,連接FB、FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=,BE=1,求半圓的面積.
【答案】(1)見解析;(2)半圓的面積是
【解析】
(1)由AB是直徑可得∠AEB=90°,根據(jù)等腰三角形的性質(zhì)可得BE=CE,進(jìn)而可得四邊形ABFC是平行四邊形,再根據(jù)菱形的定義即可證得結(jié)論;
(2)連接,如圖,設(shè),根據(jù)勾股定理可得關(guān)于x的方程,解方程即可求出x,進(jìn)一步即可求出半圓面積.
(1)證明:∵AB是直徑,
∴∠AEB=90°,即AE⊥BC,
∵AB=AC,
∴BE=CE,
∵AE=EF,
∴四邊形ABFC是平行四邊形,
∵AC=AB,
∴平行四邊形ABFC是菱形;
(2)解:連接,如圖,設(shè),則AC=x,
∵AB是直徑,∴∠ADB=∠BDC=90°,
∴AB2﹣AD2=CB2﹣CD2,
則,
解得:(舍),,
∴半圓的面積.
答:半圓的面積是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一個(gè)矩形紙片放置在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn)E,F分別在邊,上.沿著折疊該紙片,使得點(diǎn)A落在邊上,對(duì)應(yīng)點(diǎn)為,如圖①.再沿折疊,這時(shí)點(diǎn)E恰好與點(diǎn)C重合,如圖②.
(Ⅰ)求點(diǎn)C的坐標(biāo);
(Ⅱ)將該矩形紙片展開,再折疊該矩形紙片,使點(diǎn)O與點(diǎn)F重合,折痕與相交于點(diǎn)P,展開矩形紙片,如圖③.
①求的大;
②點(diǎn)M,N分別為,上的動(dòng)點(diǎn),當(dāng)取得最小值時(shí),求點(diǎn)N的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年春節(jié)前夕,一場(chǎng)突如其來(lái)的新冠肺炎疫情牽動(dòng)著全國(guó)人民的心,因疫情發(fā)展迅速,全國(guó)口罩等防護(hù)用品成了年貨,供應(yīng)緊張.某藥店用2000元購(gòu)進(jìn)某品牌的一批口罩后,供不應(yīng)求,又用5000元購(gòu)進(jìn)這種口罩,第二批口罩的數(shù)量是第一批的2倍,但進(jìn)貨單價(jià)比第一批貴2元.
(1)第一批口罩進(jìn)貨單價(jià)多少元?
(2)若兩次購(gòu)進(jìn)口罩按同一價(jià)格銷售,兩批全部售完后,獲利不少于2000元,那么銷售單價(jià)至少為多少元?
(3)由于黨的好政策,愛心工人加班加點(diǎn)地生產(chǎn),口罩變得不再緊俏,藥店第三批進(jìn)貨單價(jià)比第一批便宜1元,若按照(2)中銷售單價(jià)出售,每天可以售出60個(gè),藥店為了促銷,決定降低一定的價(jià)格,每降低一元,每天多售出20個(gè),問(wèn)單價(jià)定為多少時(shí),每天利潤(rùn)最大?最大是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校“心靈信箱”的設(shè)立,為師、生之間的溝通開設(shè)了一個(gè)書面交流的渠道.為了解九年級(jí)學(xué)生對(duì)“心靈信箱”開通兩年來(lái)的使用情況,某課題組對(duì)該校九年級(jí)全體學(xué)生進(jìn)行了一次問(wèn)卷調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.
根據(jù)圖表,解答以下問(wèn)題:
(1)該校九年級(jí)學(xué)生共有 人;
(2)學(xué)生調(diào)查結(jié)果扇形統(tǒng)計(jì)圖中,扇形D的圓心角度數(shù)是 ;
(3)請(qǐng)你補(bǔ)充條形統(tǒng)計(jì)圖;
(4)根據(jù)調(diào)查結(jié)果可以推斷:兩年來(lái),該校九年級(jí)學(xué)生通過(guò)“心靈信箱”投遞出的信件總數(shù)至少有 封.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,正方形OABC如圖放置,反比例函數(shù)的圖像交AB于點(diǎn)D,交BC于點(diǎn)E,已知A(,0),∠DOE=30°,則k的值為( )
A.B.C.3D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,正方形OABC如圖放置,反比例函數(shù)的圖像交AB于點(diǎn)D,交BC于點(diǎn)E,已知A(,0),∠DOE=30°,則k的值為( )
A.B.C.3D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】茶葉是安徽省主要經(jīng)濟(jì)作物之一,2020年新茶上市期間,某茶廠為獲得最大利益,根據(jù)市場(chǎng)行情,把新茶價(jià)格定為400元/kg,并根據(jù)歷年的相關(guān)數(shù)據(jù)整理出第x天(1≤x≤15,且x為整數(shù))制茶成本(含采摘和加工)和制茶量的相關(guān)信息如下表.假定該茶廠每天制作和銷售的新茶沒(méi)有損失,且能在當(dāng)天全部售出(當(dāng)天收入=日銷售額-日制茶成本)
制茶成本(元/kg) | 150+10x |
制茶量(kg) | 40+4x |
(1)求出該茶廠第10天的收入;
(2)設(shè)該茶廠第x天的收入為y(元).試求出y與x之間的函數(shù)關(guān)系式,并求出y的最大值及此時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是菱形對(duì)角線的交點(diǎn),,,連接交于點(diǎn).
(1)求證:;
(2)若菱形的邊長(zhǎng)為2,且,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形中,對(duì)角線,相交于O.點(diǎn).H為邊上的點(diǎn),過(guò)點(diǎn)H作,交線段于點(diǎn)E,連接交于點(diǎn)F,交于點(diǎn)G.若,則的長(zhǎng)為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com