【題目】2020年春節(jié)前夕,一場突如其來的新冠肺炎疫情牽動著全國人民的心,因疫情發(fā)展迅速,全國口罩等防護用品成了年貨,供應(yīng)緊張.某藥店用2000元購進某品牌的一批口罩后,供不應(yīng)求,又用5000元購進這種口罩,第二批口罩的數(shù)量是第一批的2倍,但進貨單價比第一批貴2元.
(1)第一批口罩進貨單價多少元?
(2)若兩次購進口罩按同一價格銷售,兩批全部售完后,獲利不少于2000元,那么銷售單價至少為多少元?
(3)由于黨的好政策,愛心工人加班加點地生產(chǎn),口罩變得不再緊俏,藥店第三批進貨單價比第一批便宜1元,若按照(2)中銷售單價出售,每天可以售出60個,藥店為了促銷,決定降低一定的價格,每降低一元,每天多售出20個,問單價定為多少時,每天利潤最大?最大是多少?
【答案】(1)8元;(2)至少為12元;(3)定價為11元時,利潤最大為320元.
【解析】
(1)根據(jù)題意,設(shè)第一批口罩的進貨價為x元,列出方程,解方程即可得到答案;
(2)設(shè)售價為y元,則列出不等式,解出不等式,即可得到答案;
(3)設(shè)降價為m元,每天的利潤為w元,根據(jù)題意,列出w與m的關(guān)系式,結(jié)合二次函數(shù)的性質(zhì),即可得到答案.
解:(1)設(shè)第一批口罩的進貨價為x元,則
,
解得:,
經(jīng)檢驗,是原分式方程的解;
答:第一批口罩進貨單價為8元;
(2)由題意,
第一批的口罩?jǐn)?shù)量為:;
∴第二批的數(shù)量為:;
設(shè)售價為y元,則
,
解得:,
答:銷售單價至少為12元;
(3)根據(jù)題意,第三批的進貨價為:元,
設(shè)降價為m元,每天的利潤為w元,
,
∴,
∴,
∴降價1元時,每天的利潤最大為320元;
∴單價為:元;
答:單價定為11元時,每天利潤最大,最大利潤是320元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,直線交坐標(biāo)軸于點、點且面積為
如圖1,求的值;
如圖2,點在軸的負半軸上,在線段上,連,作交線段于, 若點縱坐標(biāo)為長度為,求與的函數(shù)關(guān)系式(不寫自變量取值范圍);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y = ax2+ bx + c (a≠0)的圖象如圖所示,下列結(jié)論中:
①abc>0;②2a + b>0;③a +b<m(am +b)(m≠1);④(a+c)2< b2;⑤a >1.其中正確的項是( )
A.①②⑤B.①③④C.①②④D.②④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,點G在邊BC的延長線上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于點O.
(1)求證:OE=OF;
(2)若點O為CD的中點,求證:四邊形DECF是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了幫助我市一名貧困學(xué)生,某校組織捐款,現(xiàn)從全校所有學(xué)生的捐款數(shù)額中隨機抽取10名學(xué)生的捐款數(shù)統(tǒng)計如下表:
捐款金額/元 | 20 | 30 | 50 | 90 |
人數(shù) | 2 | 4 | 3 | 1 |
則下列說法正確的是( 。
A. 10名學(xué)生是總體的一個樣本
B. 中位數(shù)是40
C. 眾數(shù)是90
D. 方差是400
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解朝陽社區(qū)歲居民最喜歡的支付方式,某興趣小組對社區(qū)內(nèi)該年齡段的部分居民展開了隨機問卷調(diào)查(每人只能選擇其中一項),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息解答下列問題:
(1)求參與問卷調(diào)查的總?cè)藬?shù).
(2)補全條形統(tǒng)計圖.
(3)該社區(qū)中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=4.點G,E分別在邊AB,CD上,點F,H在對角線AC上.若四邊形EFGH是菱形,則AG的長是( )
A.B.5C.D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓交AC于點D,交BC于點E,延長AE至點F,使EF=AE,連接FB、FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=,BE=1,求半圓的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線與軸交于,兩點,頂點為.
(1)當(dāng),時,求線段的長度;
(2)當(dāng),若點到軸的距離與點到軸的距離相等,求該拋物線的解析式;
(3)若,當(dāng)時,的最大值為2,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com