【題目】某校“心靈信箱”的設(shè)立,為師、生之間的溝通開(kāi)設(shè)了一個(gè)書(shū)面交流的渠道.為了解九年級(jí)學(xué)生對(duì)“心靈信箱”開(kāi)通兩年來(lái)的使用情況,某課題組對(duì)該校九年級(jí)全體學(xué)生進(jìn)行了一次問(wèn)卷調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.
根據(jù)圖表,解答以下問(wèn)題:
(1)該校九年級(jí)學(xué)生共有 人;
(2)學(xué)生調(diào)查結(jié)果扇形統(tǒng)計(jì)圖中,扇形D的圓心角度數(shù)是 ;
(3)請(qǐng)你補(bǔ)充條形統(tǒng)計(jì)圖;
(4)根據(jù)調(diào)查結(jié)果可以推斷:兩年來(lái),該校九年級(jí)學(xué)生通過(guò)“心靈信箱”投遞出的信件總數(shù)至少有 封.
【答案】(1) 500,(2)18°(3)見(jiàn)解析(4)365
【解析】
(1)根據(jù)A所占的百分比和人數(shù),可以求得該校九年級(jí)的人數(shù);
(2)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得扇形D的圓心角度數(shù);
(3)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得C的人數(shù),從而可以將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得投遞出的信件總數(shù)至少有多少封.
解:(1)225÷45%=500,
故答案為:500;
(2)學(xué)生調(diào)查結(jié)果扇形統(tǒng)計(jì)圖中,扇形D的圓心角度數(shù)是:360°×(1﹣45%﹣30%﹣20%)=18°,
故答案為:18°;
(3)C中的人數(shù)為:500×20%=100,
補(bǔ)充完整的條形統(tǒng)計(jì)圖如右圖所示;
(4)500×30%×1+500×20%×2+500×(1﹣45%﹣30%﹣20%)×3=365(封),
故答案為:365.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),拋物線與線段有兩個(gè)不同的交點(diǎn),其中點(diǎn),點(diǎn).有下列結(jié)論:
①直線的解析式為;②方程有兩個(gè)不相等的實(shí)數(shù)根;③a的取值范圍是或.
其中,正確結(jié)論的個(gè)數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在四邊形ABCD中,點(diǎn)G在邊BC的延長(zhǎng)線上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于點(diǎn)O.
(1)求證:OE=OF;
(2)若點(diǎn)O為CD的中點(diǎn),求證:四邊形DECF是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解朝陽(yáng)社區(qū)歲居民最喜歡的支付方式,某興趣小組對(duì)社區(qū)內(nèi)該年齡段的部分居民展開(kāi)了隨機(jī)問(wèn)卷調(diào)查(每人只能選擇其中一項(xiàng)),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)求參與問(wèn)卷調(diào)查的總?cè)藬?shù).
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)該社區(qū)中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=4.點(diǎn)G,E分別在邊AB,CD上,點(diǎn)F,H在對(duì)角線AC上.若四邊形EFGH是菱形,則AG的長(zhǎng)是( )
A.B.5C.D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=x2+x+3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C,過(guò)點(diǎn)C作x軸的平行線交拋物線于點(diǎn)P.連接AC.
(1)求點(diǎn)P的坐標(biāo)及直線AC的解析式;
(2)如圖2,過(guò)點(diǎn)P作x軸的垂線,垂足為E,將線段OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OF,旋轉(zhuǎn)角為α(0°<α<90°),連接FA、FC.求AF+CF的最小值;
(3)如圖3,點(diǎn)M為線段OA上一點(diǎn),以OM為邊在第一象限內(nèi)作正方形OMNG,當(dāng)正方形OMNG的頂點(diǎn)N恰好落在線段AC上時(shí),將正方形OMNG沿x軸向右平移,記平移中的正方形OMNG為正方形O′MNG,當(dāng)點(diǎn)M與點(diǎn)A重合時(shí)停止平移.設(shè)平移的距離為t,正方形O′MNG的邊MN與AC交于點(diǎn)R,連接O′P、O′R、PR,是否存在t的值,使△O′PR為直角三角形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長(zhǎng)AE至點(diǎn)F,使EF=AE,連接FB、FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=,BE=1,求半圓的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的邊長(zhǎng)AB=3cm,AC=3 cm,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿AB以1cm/s的速度向點(diǎn)B勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)D出發(fā),沿DA以2cm/s的速度向點(diǎn)A勻速運(yùn)動(dòng).若△AMN與△ACD相似,則運(yùn)動(dòng)的時(shí)間t為_____s.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)、點(diǎn)在半徑為的上,為上一動(dòng)點(diǎn),為軸上一定點(diǎn),且當(dāng)點(diǎn)從點(diǎn)逆時(shí)針運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng)是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com