【題目】如圖,矩形ABCD中,AB=10,BC=5,點(diǎn)E,F(xiàn),G,H分別在矩形ABCD各邊上,且AE=CG,BF=DH,則四邊形EFGH周長(zhǎng)的最小值為( )
A.5
B.10
C.10
D.15
【答案】B
【解析】作點(diǎn)E關(guān)于BC的對(duì)稱點(diǎn)E′,連接E′G交BC于點(diǎn)F,此時(shí)四邊形EFGH周長(zhǎng)取最小值,過(guò)點(diǎn)G作GG′⊥AB于點(diǎn)G′,如圖所示.
∵AE=CG,BE=BE′,
∴E′G′=AB=10,
∵GG′=AD=5,
∴E′G= =5 ,
∴C四邊形EFGH=2E′G=10 .
所以答案是:B.
【考點(diǎn)精析】關(guān)于本題考查的線段的基本性質(zhì)和矩形的性質(zhì),需要了解線段公理:所有連接兩點(diǎn)的線中,線段最短.也可簡(jiǎn)單說(shuō)成:兩點(diǎn)之間線段最短;連接兩點(diǎn)的線段的長(zhǎng)度,叫做這兩點(diǎn)的距離;線段的大小關(guān)系和它們的長(zhǎng)度的大小關(guān)系是一致的;矩形的四個(gè)角都是直角,矩形的對(duì)角線相等才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC 中,∠A=60°,∠ACB=40°,D為BC邊延長(zhǎng)線上一點(diǎn),BM平分∠ABC,E為射線BM上一點(diǎn).
(1)如圖1,連接CE,
①若CE∥AB,求∠BEC的度數(shù);
②若CE平分∠ACD,求∠BEC的度數(shù).
(2)若直線CE垂直于△ABC的一邊,請(qǐng)直接寫(xiě)出∠BEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】怡然美食店的A,B兩種菜品,每份成本均為14元,售價(jià)分別為20元、18元,這兩種菜品每天的營(yíng)業(yè)額共為1120元,總利潤(rùn)為280元.
(1)該店每天賣(mài)出這兩種菜品共多少份?
(2)該店為了增加利潤(rùn),準(zhǔn)備降低A種菜品的售價(jià),同時(shí)提高B種菜品的售價(jià),售賣(mài)時(shí)發(fā)現(xiàn),A種菜品售價(jià)每降0.5元可多賣(mài)1份;B種菜品售價(jià)每提高0.5元就少賣(mài)1份,如果這兩種菜品每天銷(xiāo)售總份數(shù)不變,那么這兩種菜品一天的總利潤(rùn)最多是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某蔬菜種植農(nóng)戶購(gòu)買(mǎi)白菜苗和西紅柿苗共1000株,其中白菜苗每株3元,西紅柿苗每株5元.已知該農(nóng)戶打算用不少于3600元但不多于3800元的資金購(gòu)買(mǎi)兩種蔬菜.
(1)求該農(nóng)戶可以購(gòu)買(mǎi)白菜苗株數(shù)的最大值和最小值;
(2)該農(nóng)戶按(1)中購(gòu)買(mǎi)白菜苗株數(shù)的最小值的方案購(gòu)買(mǎi)兩種蔬菜苗,經(jīng)過(guò)農(nóng)戶的精心培育,兩種蔬菜苗全成活.根據(jù)以往的數(shù)據(jù)分析,平均一株白菜苗可長(zhǎng)成2千克白菜,平均一株西紅柿苗可結(jié)3千克西紅柿.農(nóng)戶計(jì)劃采用直接銷(xiāo)售和生態(tài)采摘銷(xiāo)售兩種方式進(jìn)行銷(xiāo)售,其中直接銷(xiāo)售白菜的售價(jià)為每千克4元,直接銷(xiāo)售西紅柿的售價(jià)為每千克5元;生態(tài)采摘銷(xiāo)售時(shí)兩種蔬菜的售價(jià)一樣,都比直接銷(xiāo)售白菜的售價(jià)高,但生態(tài)采摘過(guò)程中會(huì)有的損耗.當(dāng)白菜和西紅柿各直接銷(xiāo)售一半后、剩下的全部采用生態(tài)采摘銷(xiāo)售時(shí),該農(nóng)戶可獲得8080元的利潤(rùn).求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛出租車(chē)從A地出發(fā),在一條東西走向的街道上往返,每次行駛的路程(記向東為正)記錄如下(x>6且x<14,單位:km):
第一次 | 第二次 | 第三次 | 第四次 |
x | x﹣5 | 2(6﹣x) |
(1)寫(xiě)出這輛出租車(chē)每次行駛的方向;
(2)求經(jīng)過(guò)連續(xù)4次行駛后,這輛出租車(chē)所在的位置(結(jié)果可用x表示);
(3)這輛出租車(chē)一共行駛了多少路程(結(jié)果用x表示)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某數(shù)學(xué)活動(dòng)小組為測(cè)量學(xué)校旗桿AB的高度,沿旗桿正前方2 米處的點(diǎn)C出發(fā),沿斜面坡度i=1: 的斜坡CD前進(jìn)4米到達(dá)點(diǎn)D,在點(diǎn)D處安置測(cè)角儀,測(cè)得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB∥DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈ ,cos37°≈ ,tan37°≈ .計(jì)算結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要得到AB∥CD,只需要添加一個(gè)條件,這個(gè)條件不可以是( )
A. ∠1=∠3 B. ∠B+∠BCD=180°
C. ∠2=∠4 D. ∠D+∠BAD=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=kx+b與拋物線y=ax2(a>0)相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸正半軸相交于點(diǎn)C,過(guò)點(diǎn)A作AD⊥x軸,垂足為D.
(1)若∠AOB=60°,AB∥x軸,AB=2,求a的值;
(2)若∠AOB=90°,點(diǎn)A的橫坐標(biāo)為﹣4,AC=4BC,求點(diǎn)B的坐標(biāo);
(3)延長(zhǎng)AD、BO相交于點(diǎn)E,求證:DE=CO.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com