【題目】如圖,在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm.點(diǎn)P從點(diǎn)A出發(fā)沿AB方向向點(diǎn)B運(yùn)動(dòng),速度為1cm/s,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)沿B→C→A方向向點(diǎn)A運(yùn)動(dòng),速度為2cm/s.當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)t為何值時(shí),△APC為等腰三角形.
(2)當(dāng)點(diǎn)Q在線段BC上運(yùn)動(dòng)時(shí),△PBQ的面積為S(cm2),寫(xiě)出S與t之間的函數(shù)關(guān)系.
(3)當(dāng)點(diǎn)Q在線段BC上運(yùn)動(dòng)時(shí),是否存在某一時(shí)刻t,使S△PBQ:S四邊形APQC=5:3?若存在,求出t值;若不存在,說(shuō)明理由.
(4)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使BQ平分∠ABC?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)解:①當(dāng)AP=PB時(shí),∵∠ACB=90°,
∴CP=PA=PB,
∴t=5,
②當(dāng)AC=AP時(shí),t=8,
∴t=5s或8s時(shí),△APC是等腰三角形
(2)解:當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),過(guò)點(diǎn)Q作QH⊥AB于H,
∵AP=xcm,
∴BP=(10﹣x)cm,BQ=2xcm,
∵△QHB∽△ACB,
∴ = ,
∴QH= xcm,
y= BPQH= (10﹣x) x=﹣ x2+8x(0<x≤3)
(3)解:存在.∵S△PBQ:S四邊形APQC=5:3,
∴﹣ x2+8x= × ×6×8,
解得x= 或 ,
∴t= s或 s時(shí),S△PBQ:S四邊形APQC=5:3
(4)解:存在.如圖作QH⊥AB于H.
∵∠QBC=∠QBA,QC⊥BC,QH⊥AB,
∴QC=QH=2t﹣6,AQ=14﹣2t,
∵∠A=∠A,∠AHQ=∠C=90°,
∴△AQH∽△ABC,
∴ = ,
∴ = ,
∴t= ,
∴t= s時(shí),BQ平分∠ABC
【解析】(1)分兩種情形討論求解①當(dāng)AP=PB時(shí),可以證明CP=PA=PB,t=5,.②當(dāng)AC=AP時(shí);t=5,t=5s或8s時(shí),△APC是等腰三角形
(2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),過(guò)點(diǎn)Q作QH⊥AB于H,由△QHB∽△ACB,推出 QHAC=QBAB 可得QH的長(zhǎng)度, 根據(jù)y= 12 BPQH,列出式子即可;
(3)存在.由S△PBQ:S四邊形APQC=5:3,可得關(guān)于x的方程,解方程即可解決問(wèn)題;
(4)存在.如圖作QH⊥AB于H.首先得出QC=QH=2t-6,AQ=14﹣2t,由△ AQH∽△ABC,可得 AQAB=QHBC ,從而列出方程, 解方程即可解決問(wèn)題;
【考點(diǎn)精析】關(guān)于本題考查的三角形的面積和相似三角形的判定與性質(zhì),需要了解三角形的面積=1/2×底×高;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,的角平分線與邊交于點(diǎn),的角平分線交直線于點(diǎn).
(1)若點(diǎn)在四邊形的內(nèi)部,
①如圖,若,,,則_______°;
②如圖,試探索、、之間的數(shù)量關(guān)系,并將你的探索過(guò)程寫(xiě)下來(lái).
(2)如圖,若點(diǎn)是四邊形的外部,請(qǐng)你直接寫(xiě)出、、之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,分別是邊上的點(diǎn),和交于點(diǎn),且.
(1)如圖,求證:;
(2)如圖,過(guò)點(diǎn)作,交于點(diǎn) ,求證;
(3)如圖,在(2)的條件下,,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程組解應(yīng)用題:
為了保護(hù)環(huán)境,深圳某公交公司決定購(gòu)買(mǎi)一批共10臺(tái)全新的混合動(dòng)力公交車(chē),現(xiàn)有A、B兩種型號(hào),其中每臺(tái)的價(jià)格,年省油量如下表:
A | B | |
價(jià)格(萬(wàn)元/臺(tái)) | a | b |
節(jié)省的油量(萬(wàn)升/年) | 2.4 | 2 |
經(jīng)調(diào)查,購(gòu)買(mǎi)一臺(tái)A型車(chē)比購(gòu)買(mǎi)一臺(tái)B型車(chē)多20萬(wàn)元,購(gòu)買(mǎi)2臺(tái)A型車(chē)比購(gòu)買(mǎi)3臺(tái)B型車(chē)少60萬(wàn)元.
(1)請(qǐng)求出a和b;
(2)若購(gòu)買(mǎi)這批混合動(dòng)力公交車(chē)每年能節(jié)省22.4萬(wàn)汽油,求購(gòu)買(mǎi)這批混合動(dòng)力公交車(chē)需要多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面推理過(guò)程:
如圖,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
∵∠1 =∠2(已知),
且∠1 =∠CGD(______________ _________),
∴∠2 =∠CGD(等量代換).
∴CE∥BF(___________________ ________).
∴∠ =∠C(__________________________).
又∵∠B =∠C(已知),
∴∠ =∠B(等量代換).
∴AB∥CD(________________________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算題 ——
(1)用配方法解一元二次方程:2x2﹣4x﹣5=0.
(2)化簡(jiǎn): ÷(x+2﹣ ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,輪船沿正南方向以33海里/時(shí)的速度勻速航行,在m處觀測(cè)到燈塔p在西偏南69°方向下,航行2小時(shí)后到達(dá)n處,觀測(cè)燈塔p在西偏南57°方向上,若該船繼續(xù)向南航行至離燈塔最近位置,求此時(shí)輪船離燈塔的距離約為多少海里?(結(jié)果精確到整數(shù),參考數(shù)據(jù):tan33°≈ ,sin33°≈ ,cos33°≈ ,tan21°≈ ,sin21°≈ ,c0s21°≈ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,把直角三角形的直角頂點(diǎn)放在直線上,射線平分.
(1)如圖,若,求的度數(shù).
(2)若,則的度數(shù)為 .
(3)由(1)和(2),我們發(fā)現(xiàn)和之間有什么樣的數(shù)量關(guān)系?
(4)若將三角形繞點(diǎn)旋轉(zhuǎn)到如圖所示的位置,試問(wèn)和之間的數(shù)量關(guān)系是否發(fā)生變化?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 在平面直角坐標(biāo)系xOy中,三角形ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為(-2,-2),(3,1),(0,2),若把三角形ABC向上平移 3 個(gè)單位長(zhǎng)度,再向左平移 個(gè)單位長(zhǎng)度得到三角形 ,點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別為 ,,.
(1)寫(xiě)出點(diǎn) ,, 的坐標(biāo);
(2)在圖中畫(huà)出平移后的三角形 ;
(3)三角形 的面積為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com