【題目】列方程組解應用題:
為了保護環(huán)境,深圳某公交公司決定購買一批共10臺全新的混合動力公交車,現(xiàn)有A、B兩種型號,其中每臺的價格,年省油量如下表:
A | B | |
價格(萬元/臺) | a | b |
節(jié)省的油量(萬升/年) | 2.4 | 2 |
經(jīng)調(diào)查,購買一臺A型車比購買一臺B型車多20萬元,購買2臺A型車比購買3臺B型車少60萬元.
(1)請求出a和b;
(2)若購買這批混合動力公交車每年能節(jié)省22.4萬汽油,求購買這批混合動力公交車需要多少萬元?
【答案】(1)a=120,b=100;(2)1120萬元.
【解析】試題分析:(1)根據(jù)“購買一臺A型車比購買一臺B型車多20萬元,購買2臺A型車比購買3臺B型車少60萬元.”即可列出關于a、b的二元一次方程組,解之即可得出結論;
(2)設A型車購買x臺,則B型車購買(10﹣x)臺,根據(jù)總節(jié)油量=2.4×A型車購買的數(shù)量+2×B型車購買的數(shù)量即可得出關于x的一元一次方程,解之即可得出x值,再根據(jù)總費用=120×A型車購買的數(shù)量+100×B型車購買的數(shù)量即可算出購買這批混合動力公交車的總費用.
試題解析:(1)根據(jù)題意得: ,
解得: .
(2)設A型車購買x臺,則B型車購買(10﹣x)臺,
根據(jù)題意得:2.4x+2(10﹣x)=22.4,
解得:x=6,
∴10﹣x=4,
∴120×6+100×4=1120(萬元).
答:購買這批混合動力公交車需要1120萬元.
科目:初中數(shù)學 來源: 題型:
【題目】你會求(a﹣1)(a2014+a2013+a2012+…+a2+a+1)的值嗎?這個問題看上去很復雜,我們可以先考慮簡單的情況,通過計算,探索規(guī)律:
;
;
.
(1)由上面的規(guī)律我們可以大膽猜想,得到(a﹣1)(a2014+a2013+a2012+…+a2+a+1)=________
利用上面的結論,求:
(2)22014+22013+22012+…+22+2+1的值是 。
(3)求52014+52013+52012+…+52+5+1的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)提示填空(8分)
如圖,EF∥AD,∠1=∠2,∠BAC=80°.將求∠AGD的過程填寫完整.
因為EF∥AD
所以∠2=____(____________________________)
又因為∠1=∠2
所以∠1=∠3(______________)
所以AB∥_____(_____________________________)
所以∠BAC+______=180°(_____________________)
因為∠BAC=80° 所以∠AGD=_______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人以相同路線前往距離單位10km的培訓中心參加學習.圖中l甲、l乙分別表示甲、乙兩人前往目的地所走的路程S(km)隨時間t(分)變化的函數(shù)圖象.以下說法:
①乙比甲提前12分鐘到達;
②甲的平均速度為15千米/小時;
③乙走了8km后遇到甲;
④乙出發(fā)6分鐘后追上甲.
其中正確的有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若數(shù)軸上點A表示的數(shù)是-1,則與點A相距3個單位長度的點表示的數(shù)是( ).
A.-4B.-3或1C.-4或2D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC的各邊都延長一倍至A′、B′、C′,連接這些點,得到一個新的三角形△A′B′C′,若△ABC的面積為1,則△A′B′C′的面積是( )
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知a、b是正實數(shù),那么, 是恒成立的.
(1)由 恒成立,說明 恒成立;
(2)已知a、b、c是正實數(shù),由 恒成立,猜測: 也恒成立;
(3)如圖,已知AB是直徑,點P是弧上異于點A和點B的一點,PC⊥AB,垂足為C,AC=a,BC=b,由此圖說明 恒成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com