【題目】數(shù)學(xué)課上林老師出示了問題:如圖,AD∥BC,∠AEF=90°,AD=AB=BC=DC,∠B=90°,點(diǎn)E是邊BC的中點(diǎn),且EF交∠DCG的平分線CF于點(diǎn)F,求證:AE=EF.
同學(xué)們作了一步又一步的研究:
(1)經(jīng)過思考,小明展示了一種解題思路:如圖1,取AB的中點(diǎn)M,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF,小明的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由;
(2)小穎提出一個(gè)新的想法:如圖2,如果把“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由;
(3)小華提出:如圖3,點(diǎn)E是BC的延長(zhǎng)線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AE=EF”仍然成立.小華的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由.
【答案】見解析
【解析】解:(1)正確.理由如下:
取AB的中點(diǎn)M,連接ME,
則AM=BM=AB,
∵AD=AB=BC=DC,
∴四邊形ABCD是菱形,
∵∠B=90°,
∴四邊形ABCD是正方形,
∴∠BCD=90°,
∴∠DCG=90°,
∵CF平分∠DCG,
∴∠DCF=45°,
∴∠ECF=90°+45°=135°,
∵∠AEF=90°,
∴∠AEB+∠FEC=90°,
∵∠BAE+∠AEB=90°,
∴∠BAE=∠FEC,
∵點(diǎn)E是邊BC的中點(diǎn),
∴BE=EC=BC,
∴AM=EC=BM=BE,
∴△BME是等腰直角三角形,
∴∠BME=45°,
∴∠AME=135°=∠ECF,
在△AME和△ECF中,,
∴△AME≌△ECF(ASA),
∴AE=EF
(2)正確.理由如下:在AB上取一點(diǎn)M,使AM=EC,連接ME.
∵AB=BC,AM=EC,
∴BM=BE.
∴∠BME=45°.
∴∠AME=135°.
∵CF是外角平分線,
∴∠DCF=45°,
∴∠ECF=135°.
∴∠AME=∠ECF.
∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,
∴∠BAE=∠CEF.
在△AME和△ECF中,,
∴△AME≌△BCF.
∴AE=EF.
(3)正確.理由如下:在BA的延長(zhǎng)線上取一點(diǎn)N,使AN=CE,連接NE.
∵AB=BC,AN=CE,
∴BN=BE.
∴∠N=∠FCE=45°..
∵四邊形ABCD是正方形,
∴AD∥BE.
∴∠DAE=∠BEA.
∴∠NAE=∠CEF.
在△ANE和△ECF中,,
∴△ANE≌△ECF(ASA).
∴AE=EF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年7月11日是第二十二個(gè)世界人口日,本次世界人口日的主題是“面對(duì)74億人的世界”,74億人用科學(xué)記數(shù)法表示為人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的位置。如圖所示,
現(xiàn)將△ABC平移后得△EDF,使點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)A對(duì)應(yīng)點(diǎn)為點(diǎn)E.
(1)畫出△EDF;
(2)線段BD與AE有何關(guān)系? ____________;
(3)連接CD、BD,則四邊形ABDC的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某市九年級(jí)學(xué)生學(xué)業(yè)考試體育成績(jī),現(xiàn)隨機(jī)抽取部分學(xué)生的體育(A:50分;B:49﹣45分;C:44﹣40分;D:39﹣30分;E:29﹣0分)成績(jī)進(jìn)行分段統(tǒng)計(jì)如下:
根據(jù)上面提供的信息,回答下列問題:
(1)在統(tǒng)計(jì)表中,a的值為 ,b的值為 ;
(2)將統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果把成績(jī)?cè)?0分以上(含40分)定為優(yōu)秀,那么該市今年10560名九年級(jí)學(xué)生中體育成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(4分)有一組數(shù)據(jù):3,4,5,6,6,則這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)分別是( )
A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 (2016黑龍江大慶第10題)若x0是方程ax2+2x+c=0(a≠0)的一個(gè)根,設(shè)M=1﹣ac,N=(ax0+1)2,則M與N的大小關(guān)系正確的為( )
A.M>N B.M=N C.M<N D.不確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線y1=x+m與雙曲線y2=交于點(diǎn)A、B,已知點(diǎn)A、B的橫坐標(biāo)為2和﹣1.
(1)求k的值及直線與x軸的交點(diǎn)坐標(biāo);
(2)直線y=2x交雙曲線y=于點(diǎn)C、D(點(diǎn)C在第一象限)求點(diǎn)C、D的坐標(biāo);
(3)設(shè)直線y=ax+b與雙曲線y=(ak≠0)的兩個(gè)交點(diǎn)的橫坐標(biāo)為x1、x2,直線與 x軸交點(diǎn)的橫坐標(biāo)為x0,結(jié)合(1)、(2)中的結(jié)果,猜想x1、x2、x0之間的等量關(guān)系并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=﹣x+2分別交x、y軸于點(diǎn)A、B,點(diǎn)C為線段OA的中點(diǎn),動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)出發(fā),以2個(gè)單位長(zhǎng)度/秒的速度向終點(diǎn)A運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以個(gè)單位長(zhǎng)度/秒的速度向終點(diǎn)B運(yùn)動(dòng).過點(diǎn)Q作QM∥AB交x軸于點(diǎn)M,動(dòng)點(diǎn)P、Q同時(shí)出發(fā),其中一個(gè)點(diǎn)到達(dá)終點(diǎn),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,PM的長(zhǎng)為y個(gè)單位長(zhǎng)度.
(1)∠BCO= °;
(2)求y關(guān)于t的函數(shù)關(guān)系式及自變量t的取值范圍;
(3)是否存在時(shí)間t,使得以PC為直徑的⊙D與直線QM相切?若存在,求t的值;不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com