【題目】(4分)有一組數(shù)據(jù):3,4,5,6,6,則這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)分別是( )
A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,6
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△AOB的一條直角邊OB在x軸上,雙曲線y=(x<0)經(jīng)過斜邊OA上的點(diǎn)C,且OC:AC=1:2,與另一直角邊交于點(diǎn)D,若S△OCD=12,則k= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的個(gè)數(shù)是( )
①任何有理數(shù)的偶次冪都是正數(shù);②倒數(shù)等于本身的數(shù)有0,-1和1;③用一個(gè)平面截正方體最多得到六邊形;④所有有理數(shù)都能用數(shù)軸上的點(diǎn)表示;⑤整式包括單項(xiàng)式和多項(xiàng)式
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)計(jì)算:()-1+(π―3.14)0-2sin60°―+|1-3|;
(2)先化簡,再求值:(a+1-)÷(-),其中a=2+.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有若干張如圖1的正方形硬紙片A.B和長方形硬紙片C.
(1)小明利用這些硬紙片拼成了如圖2的一個(gè)新正方形,用兩種不同的方法,計(jì)算出了新正方形的面積,由此,他得到了一個(gè)等式:_____________
(2)小明再取其中的若干張(三種紙片都取到)拼成一個(gè)面積為a2+nab+2b2長方形,則n可取的正整數(shù)值為____,并請(qǐng)?jiān)趫D3位置畫出拼成的圖形。
(3)根據(jù)拼圖的經(jīng)驗(yàn),請(qǐng)將多項(xiàng)式a2+4ab+3b2分解因式:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上林老師出示了問題:如圖,AD∥BC,∠AEF=90°,AD=AB=BC=DC,∠B=90°,點(diǎn)E是邊BC的中點(diǎn),且EF交∠DCG的平分線CF于點(diǎn)F,求證:AE=EF.
同學(xué)們作了一步又一步的研究:
(1)經(jīng)過思考,小明展示了一種解題思路:如圖1,取AB的中點(diǎn)M,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF,小明的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由;
(2)小穎提出一個(gè)新的想法:如圖2,如果把“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由;
(3)小華提出:如圖3,點(diǎn)E是BC的延長線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AE=EF”仍然成立.小華的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平靜的湖面上,有一支紅蓮,高出水面1米,一陣風(fēng)吹來,紅蓮移到一邊,花朵齊及水面,已知紅蓮移動(dòng)的水平距離為2米,這里的水深為( )米.
A.1.5
B.2
C.2.5
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),AB∥CD,猜想∠BPD與∠B、∠D的關(guān)系,說出理由.
解:猜想∠BPD+∠B+∠D=360°
理由:過點(diǎn)P作EF∥AB,
∴∠B+∠BPE=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∵AB∥CD,EF∥AB,
∴EF∥CD,(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.)
∴∠EPD+∠D=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
(1)依照上面的解題方法,觀察圖(2),已知AB∥CD,猜想圖中的∠BPD與∠B、∠D的關(guān)系,并說明理由.
(2)觀察圖(3)和(4),已知AB∥CD,猜想圖中的∠BPD與∠B、∠D的關(guān)系,不需要說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com