【題目】(1)2y2+4y=y+2(用因式分解法)
(2)x2﹣7x﹣18=0(用公式法)
(3)4x2﹣8x﹣3=0(用配方法)
【答案】(1)y1=﹣2,y2=;(2)x1=9,x2=﹣2;(3)x1=1+,x2=1﹣.
【解析】
(1)先變形為2y(y+2)﹣(y+2)=0,然后利用因式分解法解方程;
(2)先計算出判別式的值,然后利用求根公式法解方程;
(3)先把二次項系數化為1,再兩邊加上一次項系數一半的平方,配方法得到(x﹣1)2=,然后利用直接開平方法解方程.
解:(1)2y(y+2)﹣(y+2)=0,
∴(y+2)(2y﹣1)=0,
∴y+2=0或2y﹣1=0,
所以y1=﹣2,y2=;
(2)a=1,b=﹣7,c=﹣18,
∴△=(﹣7)2﹣4×(﹣18)=121,
∴x=,
∴x1=9,x2=﹣2;
(3)x2﹣2x=,
∴x2﹣2x+1=+1,
∴(x﹣1)2=,
∴x﹣1=±,
∴x1=1+,x2=1﹣.
科目:初中數學 來源: 題型:
【題目】在校園文化藝術節(jié)中,九年級(1)班有1名男生和2名女生獲得美術獎,另有2名男生和2名女生獲得音樂獎.
(1)從獲得美術獎和音樂獎的7名學生中選取1名參加頒獎大會,恰好選到男生是 事件(填隨機或必然),選到男生的概率是 .
(2)分別從獲得美術獎、音樂獎的學生中各選取1名參加頒獎大會,用列表或樹狀圖的方法,求剛好是一男生和一女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD的頂點A、B在一個半徑為2的圓上, 頂點C、D在圓內,將正方形ABCD沿圓的內壁作無滑動的滾動.當滾動一周回到原位置時,點C運動的路徑長為__ _.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,一臺燈放置在水平桌面上,底座AB與桌面垂直,底座高AB=5cm,連桿BC=CD=20cm,BC,CD與AB始終在同一平面內.
(1)如圖②,轉動連桿BC,CD,使∠BCD成平角,∠ABC=143°,求連桿端點D離桌面l的高度DE.
(2)將圖②中的連桿CD再繞點C逆時針旋轉16°,如圖③,此時連桿端點D離桌面l的高度減小了 cm.
(參考數據:sin37°=0.6,cos37°=0.8,tan37°=0.75)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F兩點在BC上,且四邊形AEFD是平行四邊形.
(1)AD與BC有何等量關系?請說明理由;
(2)當AB=DC時,求證:四邊形AEFD是矩形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過A(﹣2,0),B(﹣3,3)及原點O,頂點為C.
(1)求拋物線的解析式;
(2)若點D在拋物線上,點E在拋物線的對稱軸上,且A、O、D、E為頂點的四邊形是平行四邊形,求點D的坐標;
(3)P是拋物線上的第一象限內的動點,過點P作PMx軸,垂足為M,是否存在點P,使得以P、M、A為頂點的三角形△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知⊙O中,弦AB=AC,∠BAC=120°
(1)如圖①,若AB=3,求⊙O的半徑.
(2)如圖②,點P是∠BAC所對弧上一動點,連接PB、PA、PC,試請判斷PA、PB、PC之間的數量關系并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】嘉淇同學利用業(yè)余時間進行射擊訓練,一共射擊7次,經過統(tǒng)計,制成如圖12所示的折線統(tǒng)計圖.
(1)這組成績的眾數是 ;
(2)求這組成績的方差;
(3)若嘉淇再射擊一次(成績?yōu)檎麛淡h(huán)),得到這8次射擊成績的中位數恰好就是原來7次成績的中位數,求第8次的射擊成績的最大環(huán)數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com