【題目】如圖,某辦公樓AB的后面有一建筑物CD,當光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高2米的影子CE,而當光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有25米的距離(B,F(xiàn),C在一條直線上).

(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈ ,cos22° ,tan22

【答案】
(1)解:如圖,

過點E作EM⊥AB,垂足為M.

設AB為x.

Rt△ABF中,∠AFB=45°,

∴BF=AB=x,

∴BC=BF+FC=x+25,

在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,

tan22°= ,

=

解得:x=20.

即教學樓的高20m.


(2)解:由(1)可得ME=BC=x+25=20+25=45.

在Rt△AME中,cos22°=

∴AE= ,

即A、E之間的距離約為48m


【解析】(1)首先構(gòu)造直角三角形△AEM,利用tan22°= ,求出即可;(2)利用Rt△AME中,cos22°= ,求出AE即可.此題主要考查了解直角三角形的應用,根據(jù)已知得出tan22°= 是解題關鍵

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BOC=9°,點A在OB上,且OA=1,按下列要求畫圖:

以A為圓心,1為半徑向右畫弧交OC于點A1,得第1條線段AA1;再以A1為圓心,1為半徑向右畫弧交OB于點A2,得第2條線段A1A2;再以A2為圓心,1為半徑向右畫弧交OC于點A3,得第3條線段A2A3;…這樣畫下去,直到得第n條線段,之后就不能再畫出符合要求的線段了,則n=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE∥AC且DE=AC,連接AE交OD于點F,連接CE、OE.

(1)求證:OE=CD;

(2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,A市到B市的路程為260千米,甲車從A市前往B市運送物資,行駛2小時在M地汽車出現(xiàn)故障,立即通知技術人員乘乙車從A市趕來維修(通知時間忽略不計),乙車到達M地后又經(jīng)過20分鐘修好甲車后以原速原路返回A市,同時甲車以原來1.5倍的速度前往B市,如圖是兩車距A市的路程y(千米)與甲車所用時間x(小時)之間的函數(shù)圖象,下列四種說法:

①甲車提速后的速度是60千米/時;

②乙車的速度是96千米/時;

③乙車返回時yx的函數(shù)關系式為y=﹣96x+384;

④甲車到達B市乙車已返回A2小時10分鐘.

其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點P從點A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運動到點B時停止(不含點A和點B),則△ABP的面積S隨著時間t變化的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動點P從點A開始沿邊AC向點C以1個單位長度的速度運動,動點Q從點C開始沿邊CB向點B以每秒2個單位長度的速度運動,過點P作PD∥BC,交AB于點D,連接PQ分別從點A、C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動,設運動時間為t秒(t≥0).

(1)直接用含t的代數(shù)式分別表示:QB=   ,PD=   

(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變Q的速度(勻速運動),使四邊形PDBQ在某一時刻為菱形,求點Q的速度;

(3)如圖2,在整個運動過程中,求出線段PQ中點M所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:3tan30°﹣ +(2016+π)0+(﹣ 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O的直徑為AB,AC⊥AB于點A,BC與⊙O相交于點D,在AC上取一點E,使得ED=EA.

(1)求證:ED是⊙O的切線;
(2)當OE=10時,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是等邊三角形ABC內(nèi)的一點,且PA=3,PB=3,PC=5,BC為邊在△ABC外作△BQC≌△BPA,連接PQ,則以下結(jié)論錯誤的是(

A. △BPQ是等邊三角形 B. △PCQ是直角三角形 C. ∠APB=150° D. ∠APC=135°

查看答案和解析>>

同步練習冊答案