【題目】現(xiàn)有5個(gè)質(zhì)地、大小完全相同的小球上分別標(biāo)有數(shù)字-1,-2,1,2,3.先將標(biāo)有數(shù)字-2,1,3的小球放在第一個(gè)不透明的盒子里,再將其余小球放在第二個(gè)不透明的盒子里.現(xiàn)分別從兩個(gè)盒子里各隨即取出一個(gè)小球.
(1)請(qǐng)利用列表或畫樹狀圖的方法表示取出的兩個(gè)小球上數(shù)字之和所有可能的結(jié)果;
(2)求取出的兩個(gè)小球上的數(shù)字之和等于0的概率.

【答案】
(1)

列表得:

-1

2

-2

-3

0

1

0

3

3

2

5

則共有6種結(jié)果,且它們的可能性相同.


(2)

∵取出的兩個(gè)小球上的數(shù)字之和等于0的有:(1,-1),(-2,2),∴兩個(gè)小球上的數(shù)字之和等于0的概率為:


【解析】此題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.(1)首先根據(jù)題意列出表格,由表格即可求得取出的兩個(gè)小球上數(shù)字之和所有等可能的結(jié)果;(2)首先根據(jù)(1)中的表格,求得取出的兩個(gè)小球上的數(shù)字之和等于0的情況,然后利用概率公式即可求得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知A(0,a)、B(b, 0),且a、b滿足: ,點(diǎn)Dx正半軸上一動(dòng)點(diǎn)

(1)A、B兩點(diǎn)的坐標(biāo)

(2)如圖,∠ADO的平分線交y軸于點(diǎn)C,點(diǎn) F為線段OD上一動(dòng)點(diǎn),過點(diǎn)FCD的平行線交y軸于點(diǎn)H,且∠AFH=45°, 判斷線段AH、FD、AD三者的數(shù)量關(guān)系,并予以證明

(3)AO為腰,A為頂角頂點(diǎn)作等腰△ADO,若∠DBA=30°,直接寫出∠DAO的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)吃粽子是中華民族的傳統(tǒng)習(xí)俗,五月初五早上,奶奶為小明準(zhǔn)備了四只粽子:一只肉餡,一只香腸餡,兩只紅棗餡,四只粽子除內(nèi)部餡料不同外其他均一切相同.小明喜歡吃紅棗餡的粽子.
(1)請(qǐng)你用樹狀圖為小明預(yù)測一下吃兩只粽子剛好都是紅棗餡的概率;
(2)在吃粽子之前,小明準(zhǔn)備用一個(gè)均勻的正四面體骰子(如圖所示)進(jìn)行吃粽子的模擬試驗(yàn),規(guī)定:擲得點(diǎn)數(shù)1向上代表肉餡,點(diǎn)數(shù)2向上代表香腸餡,點(diǎn)數(shù)3,4向上代表紅棗餡,連續(xù)拋擲這個(gè)骰子兩次表示隨機(jī)吃兩只粽子,從而估計(jì)吃兩只粽子剛好都是紅棗餡的概率.你認(rèn)為這樣模擬正確嗎?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒子里有完全相同的三個(gè)小球,球上分別標(biāo)上數(shù)字-1、1、2.隨機(jī)摸出一個(gè)小球(不放回)其數(shù)字記為p,再隨機(jī)摸出另一個(gè)小球其數(shù)字記為q,則滿足關(guān)于x的方程x2+px+q=0有實(shí)數(shù)根的概率是( 。.
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ACBC,CDAB,DEAC,1與∠2互補(bǔ),判斷HFAB是否垂直,并說明理由(填空)

解:垂直.理由如下:

DEAC,ACBC,

∴∠AED=ACB=90°( 垂直的意義  ).

DEBC(   

∴∠1=DCB(   

∵∠1與∠2互補(bǔ)(已知).

∴∠DCB與∠2互補(bǔ)

同旁內(nèi)角互補(bǔ),兩直線平行

∴∠BFH=CDB(    

CDAB,

∴∠CDB=90°.

∴∠BFH=    ).

HFAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】仔細(xì)閱讀下面例題,解答問題

例題:已知二次三項(xiàng)式x24x+m有一個(gè)因式是(x+3),求另一個(gè)因式以及m的值.

解:設(shè)另一個(gè)因式為(x+n),得x24x+m=(x+3)(x+n),

x24x+mx2+n+3x+3n

解得:n=﹣7,m=﹣21

∴另一個(gè)因式為(x7),m的值為﹣21

問題:

1)若二次三項(xiàng)式x25x+6可分解為(x2)(x+a),則a   ;

2)若二次三項(xiàng)式2x2+bx5可分解為(2x1)(x+5),則b   ;

3)仿照以上方法解答下面問題:若二次三項(xiàng)式2x2+3xk有一個(gè)因式是(2x5),求另一個(gè)因式以及k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法正確的是(  ).
A.連續(xù)拋一枚均勻硬幣2次必有1次正面朝上
B.連續(xù)拋一枚均勻硬幣10次,不可能正面都朝上
C.大量反復(fù)拋一枚均勻硬幣,平均每100次出現(xiàn)正面朝上50次
D.通過拋一枚均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖中有四條互相不平行的直線、、所截出的七個(gè)角,關(guān)于這七個(gè)角的度數(shù)關(guān)系,下列選項(xiàng)正確的是( )

A. ∠2=∠4+∠5 B. ∠3=∠1+∠6 C. ∠1+∠4+∠7=180° D. ∠5=∠1+∠4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小李到某城市行政中心大樓辦事,假定乘電梯向上一樓記為+1,向下一樓記為–1.

小李從1樓出發(fā),電梯上下樓層依次記錄如下(單位:層): +5,–3,+10,–8,+12,–6,–10.

(1)請(qǐng)你通過計(jì)算說明小李最后是否回到出發(fā)點(diǎn)1樓;

(2)該中心大樓每層高2.8m,電梯每上或下1m需要耗電0.1度.根據(jù)小李現(xiàn)在所處的位置,請(qǐng)你算一算,當(dāng)他辦事時(shí)電梯需要耗電多少度?

查看答案和解析>>

同步練習(xí)冊(cè)答案