【題目】如圖,轉(zhuǎn)盤中8個扇形的面積都相等,任意轉(zhuǎn)動轉(zhuǎn)盤1,當轉(zhuǎn)盤停止轉(zhuǎn)動時,估計下列事件發(fā)生的可能性的大小,并將這些事件的序號按發(fā)生的可能性從小到大的順序排成一列是__________.(填序號)

1)指針落在標有3的區(qū)域內(nèi);(2)指針落在標有9的區(qū)域內(nèi);

3)指針落在標有數(shù)字的區(qū)域內(nèi);(4)指針落在標有奇數(shù)的區(qū)域內(nèi).

【答案】(2)(1)(4)(3)

【解析】

根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率,據(jù)此求出各事件的概率即可求得答案.

∵有1、2、3、4、5、6、7、88個數(shù),

(1)指針落在標有3的區(qū)域內(nèi)的概率為:;

(2)指針落在標有9的區(qū)域內(nèi)的概率為:0;

(3)指針落在標有數(shù)字的區(qū)域內(nèi)的概率為:=1;

(4)指針落在標有奇數(shù)的區(qū)域內(nèi)的概率為:=,

所以按發(fā)生的可能性從小到大的順序排成一列為:(2)(1)(4)(3)

故答案為:(2)(1)(4)(3).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋子里裝有10個除號碼外其余都相同的小球,每個小球的號碼分別是12,3,4,5,67,89,10將它們充分搖勻,并從中任意摸出一個小球.規(guī)定摸出小球號碼能被3整除時,甲獲勝;摸出小球號碼能被5整除時,乙獲勝;這個游戲?qū)滓译p方公平么?請說明理由.如果不公平,應(yīng)該如何修改游戲規(guī)則才能對雙方公平?(游戲?qū)﹄p方公平的原則是:雙方獲勝的概率相等)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了開設(shè)武術(shù)、舞蹈、剪紙等三項活動課程以提升學生的體藝素養(yǎng),隨機抽取了部分學生對這三項活動的興趣情況進行了調(diào)查(每人從中只能選一項),并將調(diào)查結(jié)果繪制成如圖兩幅統(tǒng)計圖,請你結(jié)合圖中信息解答問題.

1)將條形統(tǒng)計圖補充完整;

2)本次抽樣調(diào)查的樣本容量是 ;

3)已知該校有1200名學生,請你根據(jù)樣本估計全校學生中喜歡剪紙的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD,OE平分∠BOC,OFOE,OPCD,∠ABO40°,則下列結(jié)論:BOE70°;OF平分∠BOD;POE=∠BOF;POB2DOF.其中正確結(jié)論有_____填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,雙曲線y1與直線y2的圖象交于A、B兩點.已知點A的坐標為(41),點Pab)是雙曲線y1上的任意一點,且0a4

1)分別求出y1y2的函數(shù)表達式;

2)連接PAPB,得到△PAB,若4ab,求三角形ABP的面積;

3)當點P在雙曲線y1上運動時,設(shè)PBx軸于點E,延長PAx軸于點F,判斷PEPF的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:CEABC的外角∠ACD的平分線,且CEBA的延長線于點E

1)如圖1,求證∠BAC=B+2E;

2)如圖2,過點AAFBC,垂足為點F,若∠DCE=2CAF,∠B=2E,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,半徑均為1個單位長度的半圓O1、O2、室O3,組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2018秒時,點P的坐標是( 。

A. 20170B. 2018,﹣1C. 2017,1D. 2018,0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的方程(m﹣1x2x﹣2=0

1)若x=﹣1是方程的一個根,求m的值和方程的另一根;

2)當m為何實數(shù)時,方程有實數(shù)根;

3)若x1,x2是方程的兩個根,且,試求實數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解全校1800名學生對學校設(shè)置的體操、球類、跑步、踢毽子等課外體育活動項目的喜愛情況,在全校范圍內(nèi)隨機抽取了若干名學生.對他們最喜愛的體育項目(每人只選一項)進行了問卷調(diào)查,將數(shù)據(jù)進行了統(tǒng)計并繪制成了如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整).

1)補全頻數(shù)分布直方圖;

2)求扇形統(tǒng)計圖中表示踢毽子項目扇形圓心角的度數(shù).

3)估計該校1800名學生中有多少人最喜愛球類活動?

查看答案和解析>>

同步練習冊答案