【題目】為了了解全校1800名學(xué)生對學(xué)校設(shè)置的體操、球類、跑步、踢毽子等課外體育活動項目的喜愛情況,在全校范圍內(nèi)隨機抽取了若干名學(xué)生.對他們最喜愛的體育項目(每人只選一項)進(jìn)行了問卷調(diào)查,將數(shù)據(jù)進(jìn)行了統(tǒng)計并繪制成了如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整).
(1)補全頻數(shù)分布直方圖;
(2)求扇形統(tǒng)計圖中表示“踢毽子”項目扇形圓心角的度數(shù).
(3)估計該校1800名學(xué)生中有多少人最喜愛球類活動?
【答案】(1) 80名;(2) 20人,補全圖形見解析;(3)估計全校有810人最喜歡球類活動.
【解析】
(1)根據(jù)參加體操的人數(shù)為10人,占扇形圖的12.5%,即可得出參加活動的總?cè)藬?shù),即可求出踢毽子的人數(shù);
(2)根據(jù)踢毽子的人數(shù)所占的比例即可得出扇形圓心角的度數(shù);
(3)根據(jù)樣本估計總體,即可得出估計全校最喜歡球類活動的人數(shù).
(1)10÷12.5%×25%=20(人),如圖所示.
(2)扇形統(tǒng)計圖中表示“踢毽子”項目扇形圓心角的度數(shù)為 =90°;
(3)(人).
估計全校有810人最喜歡球類活動.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,轉(zhuǎn)盤中8個扇形的面積都相等,任意轉(zhuǎn)動轉(zhuǎn)盤1次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,估計下列事件發(fā)生的可能性的大小,并將這些事件的序號按發(fā)生的可能性從小到大的順序排成一列是__________.(填序號)
(1)指針落在標(biāo)有3的區(qū)域內(nèi);(2)指針落在標(biāo)有9的區(qū)域內(nèi);
(3)指針落在標(biāo)有數(shù)字的區(qū)域內(nèi);(4)指針落在標(biāo)有奇數(shù)的區(qū)域內(nèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小明從學(xué)校到家行進(jìn)的路程s(米)與時間t(分)的圖象,觀察圖象,從中得到如下信息:①學(xué)校離小明家1000米;②小明用了20分鐘到家③小明前10分鐘走了路程的一半;④小明后10分鐘比前10分鐘走得快,其中正確的有( )
A. ①②③B. ①②④C. ②③④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、E、F、D四點在同一直線上,CE∥BF,CE=BF,∠B=∠C.(1)△ABF與△DCE全等嗎?請說明理由;(2)AB與CD平行嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=∠C=40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當(dāng)∠BDA=115°時,∠EDC=______°,∠DEC=______°;點D從B向C運動時,∠BDA逐漸變______(填“大”或“小”);
(2)當(dāng)DC等于多少時,△ABD≌△DCE,請說明理由;
(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù).若不可以,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場2017年7月份的營業(yè)額為160萬元,9月份的營業(yè)額達(dá)到250萬元,7月份到9月份的月平均增長率相等.
(1)求7月份到9月份的月平均增長率?
(2)按照此增長速率,10月份的營業(yè)額預(yù)計達(dá)到多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場要經(jīng)營一種新上市的文具,進(jìn)價為20元∕件.試銷階段發(fā)現(xiàn):當(dāng)銷售價為25元∕件時,每天的銷售量是250件,銷售價每上漲1元,每天的銷售量就減少10件.
(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系式.
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大?
(3)在保證銷售量盡可能大的前提下,該商場想獲得每天2000元的利潤,應(yīng)該將銷售價定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,一次函數(shù)y=-2x+1,與反比例函數(shù)的圖象有兩個交點A點、B點,過點A作AE⊥x軸于點E,點E坐標(biāo)為(-1,0),過點B作BD⊥y軸于點D,直線AB交y軸于點C.
(1)求k的值;
(2)求tan∠CBD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠計劃生產(chǎn)A、B兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤如下表:
(1)若工廠計劃獲利14萬元,問A、B兩種產(chǎn)品應(yīng)分別生產(chǎn)多少件?
(2)若工廠投入資金不多于44萬元,且獲利多于14萬元,問工廠有哪幾種生產(chǎn)方案?
(3)在(2)條件下,哪種方案獲利最大?并求最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com