【題目】圖1、圖2分別是兩張形狀和大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,線(xiàn)段的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.
(1)在圖1中畫(huà)出以為直角邊的直角,點(diǎn)在小正方形的頂點(diǎn)上,且;
(2)在圖2中畫(huà)出以為腰的鈍角等腰,點(diǎn)在小正方形的頂點(diǎn)上,且的面積為10.并直接寫(xiě)出線(xiàn)段的長(zhǎng).
【答案】(1)見(jiàn)詳解;(2)見(jiàn)詳解, .
【解析】
(1)根據(jù)和可知BC的長(zhǎng)度為2,然后即可確定C點(diǎn)的位置,連接BC,AC即可;
(2)根據(jù)AB的長(zhǎng)度和的面積可知D到AB的距離為4,再利用等腰三角形的定義有即可確定D點(diǎn)的位置,連接AD,BD即可.
(1)∵,,
∴ .
直角如圖:
(2),
∴,
即D到AB的距離為4.
根據(jù),
由勾股定理可知B,D兩點(diǎn)的水平距離為3,由此可確定D點(diǎn)的位置,如圖:
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在港口A的南偏東37°方向的海面上,有一巡邏艇B,A、B相距20海里,這時(shí)在巡邏艇的正北方向及港口A的北偏東67°方向上,有一漁船C發(fā)生故障.得知這一情況后,巡邏艇以25海里/小時(shí)的速度前往救援,問(wèn)巡邏艇能否在1小時(shí)內(nèi)到達(dá)漁船C處?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈,cos67°≈,tan67°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖像如圖所示,則下列結(jié)論正確的個(gè)數(shù)有( )
①c>0;②b2-4ac<0;③ a-b+c>0;④當(dāng)x>-1時(shí),y隨x的增大而減。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)在軸正半軸上,且,以為邊在第一象限內(nèi)作正方形,且雙曲線(xiàn)經(jīng)過(guò)點(diǎn).
(1)求的值;
(2)將正方形沿軸負(fù)方向平移得到正方形,當(dāng)點(diǎn)恰好落在雙曲線(xiàn)上時(shí),求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,BD為⊙O的直徑,過(guò)點(diǎn)A作AE⊥BD于點(diǎn)E,延長(zhǎng)BD交AC延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)若AE=4,AB=5,求⊙O的半徑;
(2)若BD=2DF,求sin∠ACB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),拋物線(xiàn)與軸交于點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸正半軸交于點(diǎn),.
(1)如圖1,求的值;
(2)如圖2,拋物線(xiàn)的頂點(diǎn)坐標(biāo)是,點(diǎn)是第一象限拋物線(xiàn)上的一點(diǎn),連接交拋物線(xiàn)的對(duì)稱(chēng)軸于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)是,線(xiàn)段的長(zhǎng)為,求與的函數(shù)關(guān)系式;
(3)如圖3,在(2)的條件下,當(dāng)時(shí),過(guò)點(diǎn)作軸交拋物線(xiàn)于點(diǎn),點(diǎn)是軸下方拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),連接交軸于點(diǎn),直線(xiàn)經(jīng)過(guò)點(diǎn)交于點(diǎn),連接,過(guò)點(diǎn)作交于點(diǎn),若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,∠B=90o,以AB上的一點(diǎn)O為圓心,以OA為半徑的圓交AC于點(diǎn)D,交AB于點(diǎn)E.
(1)求證:AC·AD=AB·AE;
(2)如果BD是⊙O的切線(xiàn),D是切點(diǎn),E是OB的中點(diǎn),當(dāng)BC=2時(shí),求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=6,將Rt△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使斜邊A′B′過(guò)B點(diǎn),則線(xiàn)段CA掃過(guò)的面積為_____.(結(jié)果保留根號(hào)和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在⊙O中,AB是非直徑弦,弦CD⊥AB,
(1)當(dāng)CD經(jīng)過(guò)圓心時(shí)(如圖①),∠AOC+∠DOB=__________;
(2)當(dāng)CD不經(jīng)過(guò)圓心時(shí)(如圖②),∠AOC+∠DOB的度數(shù)與(1)的情況相同嗎?試說(shuō)明你的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com