【題目】如圖,在港口A的南偏東37°方向的海面上,有一巡邏艇B,A、B相距20海里,這時(shí)在巡邏艇的正北方向及港口A的北偏東67°方向上,有一漁船C發(fā)生故障.得知這一情況后,巡邏艇以25海里/小時(shí)的速度前往救援,問(wèn)巡邏艇能否在1小時(shí)內(nèi)到達(dá)漁船C處?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈,cos67°≈,tan67°≈)
【答案】巡邏艇能在1小時(shí)內(nèi)到達(dá)漁船C處.
【解析】
由已知可得△ABC中∠C=67°,∠B=37°且AB=20海里.要求BC的長(zhǎng),可以過(guò)A作AD⊥BC于D,先求出CD和BD的長(zhǎng),就可轉(zhuǎn)化為運(yùn)用三角函數(shù)解直角三角形.
過(guò)點(diǎn)A作AH⊥BC,垂足為點(diǎn)H.
由題意,得∠ACH=67°,∠B=37°,AB=20.
在Rt△ABH中,
∵sinB=,∴AH=ABsin∠B=20×sin37°≈12,
∵cosB=,∴BH=ABcos∠B=20×cos37°≈16,
在Rt△ACH中,
∵,
∴CH=,
∵BC=BH+CH,∴BC≈16+5=21.
∵21÷25<1,
所以,巡邏艇能在1小時(shí)內(nèi)到達(dá)漁船C處.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是BC邊的中點(diǎn),BD=2,tanB=.
(1)求AD和AB的長(zhǎng);
(2)求sin∠BAD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義符號(hào)min{a,b}的含義:當(dāng)a≥b時(shí),min{a,b}=b;當(dāng)a<b時(shí),min{a,b}=a,如min{1,﹣4}=﹣4,min{﹣6,﹣2}=﹣6,則min{﹣x2+2,﹣2x}的最大值為( )
A. 2﹣2 B. +1 C. 1﹣ D. 2+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上的一動(dòng)點(diǎn)(不與A、B重合),CD⊥AB于D,∠OCD的平分線交⊙O于P,則當(dāng)C在⊙O上運(yùn)動(dòng)時(shí),點(diǎn)P的位置( )
A. 隨點(diǎn)C的運(yùn)動(dòng)而變化
B. 不變
C. 在使PA=OA的劣弧上
D. 無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)為正的邊上一點(diǎn)(不與點(diǎn)重合),點(diǎn)分別在邊上,且.
(1)求證:;
(2)設(shè),的面積為,的面積為,求(用含的式子表示);
(3)如圖2,若點(diǎn)為邊的中點(diǎn),求證: .
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,對(duì)角線 AC⊥BD,垂足為O,點(diǎn)E、F、G、H分別為邊AD、AB、BC、CD的中點(diǎn).若AC=10,BD=6,則四邊形EFGH的面積為( 。
A. 20B. 15C. 30D. 60
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】. 在一個(gè)不透明的布袋中裝有三個(gè)小球,小球上分別標(biāo)有數(shù)字﹣1、0、2,它們除了數(shù)字不同外,其他都完全相同.
(1)隨機(jī)地從布袋中摸出一個(gè)小球,則摸出的球?yàn)闃?biāo)有數(shù)字2的小球的概率為 ;
(2)小麗先從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點(diǎn)M的橫坐標(biāo).再將此球放回、攪勻,然后由小華再?gòu)牟即须S機(jī)摸出一個(gè)小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點(diǎn)M的縱坐標(biāo),請(qǐng)用樹(shù)狀圖或表格列出點(diǎn)M所有可能的坐標(biāo),并求出點(diǎn)M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校想了解學(xué)生每周的課外閱讀時(shí)間情況,隨機(jī)調(diào)查了部分學(xué)生,對(duì)學(xué)生每周的課外閱讀時(shí)間x(單位:小時(shí))進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計(jì)圖:
根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)補(bǔ)全頻數(shù)分布直方圖
(2)求扇形統(tǒng)計(jì)圖中m的值和E組對(duì)應(yīng)的圓心角度數(shù)
(3)請(qǐng)估計(jì)該校3000名學(xué)生中每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分10分)已知AC,EC分別為四邊形ABCD和EFCG的對(duì)角線,點(diǎn)E在△ABC內(nèi),∠CAE+∠CBE=90.
(1)如圖①,當(dāng)四邊形ABCD和EFCG均為正方形時(shí),連接BF.
i)求證:△CAE∽△CBF;
ii)若BE=1,AE=2,求CE的長(zhǎng);
(2)如圖②,當(dāng)四邊形ABCD和EFCG均為矩形,且時(shí),若BE=1,AE=2,CE=3,求k的值;
(3)如圖③,當(dāng)四邊形ABCD和EFCG均為菱形,且∠DAB=∠GEF=45°時(shí),設(shè)BE=m,AE=n,CE=p,試探究m,n,p三者之間滿足的等量關(guān)系.(直接寫(xiě)出結(jié)果,不必寫(xiě)出解答過(guò)程)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com