【題目】如圖,以的一邊為直徑的于點(diǎn),點(diǎn)是弧的中點(diǎn),連接并延長交于點(diǎn)

1)求證:;

2)①若,當(dāng)弧的長度是______時(shí),四邊形是菱形;

②在①的情況下,當(dāng)______時(shí),的切線.

【答案】1)見解析;(2)①,②2

【解析】

1)連接,根據(jù)點(diǎn)E是弧BD的中點(diǎn)得到∠FAE=BAE,由AB是直徑可得∠AEB=AEF=90°,再根據(jù)ASA證明即可得到結(jié)論;

2)①根據(jù)菱形的性質(zhì)得到∠BOE=EOD=DOA=60°,再運(yùn)用弧長公式即可求出弧AD的長;

②由①得∠A=60°可求出∠C=30°,利用直角三角形中30°角所對(duì)的直角邊等于斜邊的一半求出AC=4,再根據(jù)CF=AC-AF求解即可.

1)連接AE,如圖所示,

∵點(diǎn)E是弧BD的中點(diǎn),

∴弧BE=DE

∴∠FAE=BAE

AB是圓O的直徑,

∴∠AEB=AEF=90°

AEFAEB中,

∴△AEF≌△AEB

AF=AB

2)①假設(shè)四邊形FDOE是菱形,則有

,

∴弧AD的長為:;

故弧AD的長度是時(shí),四邊形FDOE是菱形;

②若CB的切線,則有∠ABC=90°,

由①知∠A=60°,

∴∠ACB=30°,

AB=2

AC=2AB=4

AF=AB=2

CF=AC-AF=4-2=2,

∴當(dāng)CF=2時(shí),BC是圓O的切線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸正半軸于點(diǎn), 頂點(diǎn)軸的距離是,軸交拋物線于點(diǎn),連結(jié)

1)求拋物線的解析式

2)若是等腰直角三角形,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為引領(lǐng)學(xué)生感受詩詞之美,某校團(tuán)委組織了一次全校800名學(xué)生參加的“中國詩詞大賽”,賽后發(fā)現(xiàn)有參賽學(xué)生的成績均不低于50分,為了更好地了解本次大賽的成績分布情況,隨機(jī)抽取了其中100名學(xué)生的成績(成績x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:

成績x/

頻數(shù)

頻率

50≤x60

5

0.05

60≤x70

15

0.15

70≤x80

20

n

80≤x90

m

0.35

90≤x100

25

0.25

請(qǐng)根據(jù)所給信息,解答下列問題:

1m= ,n= ;并補(bǔ)全頻數(shù)分布直方圖;

2)這100名學(xué)生成績的中位數(shù)會(huì)落在分?jǐn)?shù)段;

3)若成績?cè)?/span>90分以上(包括90分)的為優(yōu)等,則該校參加這次比賽的800名學(xué)生中成績優(yōu)等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的菱形ABCD中,∠A60°,MAD邊的中點(diǎn),NAB邊上的一動(dòng)點(diǎn),將△AMN沿MN所在直線翻折得到△AMN,連接AC,則AC長度的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線yax2+bx+cy軸交于點(diǎn)A0,6),與x軸交于點(diǎn)B(﹣2,0),C6,0).

1)直接寫出拋物線的解析式及其對(duì)稱軸;

2)如圖2,連接ABAC,設(shè)點(diǎn)Pm,n)是拋物線上位于第一象限內(nèi)的一動(dòng)點(diǎn),且在對(duì)稱軸右側(cè),過點(diǎn)PPDAC于點(diǎn)E,交x軸于點(diǎn)D,過點(diǎn)PPGABAC于點(diǎn)F,交x軸于點(diǎn)G.設(shè)線段DG的長為d,求dm的函數(shù)關(guān)系式,并注明m的取值范圍;

3)在(2)的條件下,若PDG的面積為,

①求點(diǎn)P的坐標(biāo);

②設(shè)M為直線AP上一動(dòng)點(diǎn),連接OM交直線AC于點(diǎn)S,則點(diǎn)M在運(yùn)動(dòng)過程中,在拋物線上是否存在點(diǎn)R,使得ARS為等腰直角三角形?若存在,請(qǐng)直接寫出點(diǎn)M及其對(duì)應(yīng)的點(diǎn)R的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ykx與拋物線yax2+bx+交于點(diǎn)A、C,與y軸交于點(diǎn)B,點(diǎn)A的坐標(biāo)為(20),點(diǎn)C的橫坐標(biāo)為﹣8

1)請(qǐng)直接寫出直線和拋物線的解析式;

2)點(diǎn)D是直線AB上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)AC重合),作DEAC于點(diǎn)E.設(shè)點(diǎn)D的橫坐標(biāo)為m.求DE的長關(guān)于m的函數(shù)解析式,并寫出DE長的最大值;

3)平移AOB,使平移后的三角形的三個(gè)頂點(diǎn)中有兩個(gè)在拋物線上,請(qǐng)直接寫出平移后的點(diǎn)A對(duì)應(yīng)點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了推動(dòng)全社會(huì)自覺尊法學(xué)法守法用法,促進(jìn)全面依法治國,某區(qū)每年都舉辦普法知識(shí)競賽,該區(qū)某單位甲、乙兩個(gè)部門各有員工200人,要在這兩個(gè)部門中挑選一個(gè)部門代表單位參加今年的競賽,為了解這兩個(gè)部門員工對(duì)法律知識(shí)的掌握情況,進(jìn)行了抽樣調(diào)查,從甲、乙兩個(gè)部門各隨機(jī)抽取20名員工,進(jìn)行了法律知識(shí)測試,獲得了他們的成績(百分制),并對(duì)數(shù)據(jù)(成績)進(jìn)行整理,描述和分析,下面給出了部分信息.

a.甲部門成績的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:40≤x5050≤x60,60≤x70,70≤x80,80≤x90,90≤x≤100

b.乙部門成績?nèi)缦拢?/span>

40 52 70 70 71 73 77 78 80 81

82 82 82 82 83 83 83 86 91 94

c.甲、乙兩部門成績的平均數(shù)、方差、中位數(shù)如下:

平均數(shù)

方差

中位數(shù)

79.6

36.84

78.5

77

147.2

m

d.近五年該單位參賽員工進(jìn)入復(fù)賽的出線成績?nèi)缦拢?/span>

2014

2015

2016

2017

2018

出線成績(百分制)

79

81

80

81

82

根據(jù)以上信息,回答下列問題:

1)寫出表中m的值;

2)可以推斷出選擇   部門參賽更好,理由為   ;

3)預(yù)估(2)中部門今年參賽進(jìn)入復(fù)賽的人數(shù)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦學(xué)生綜合素質(zhì)大賽,分單人項(xiàng)目雙人項(xiàng)目兩種形式,比賽題目包括下列五類:.人文藝術(shù);.歷史社會(huì);.自然科學(xué);.天文地理;.體育健康.

(1)若小明參加單人項(xiàng)目,他從中抽取一個(gè)題目,那么恰好抽中自然科學(xué)類題目的概率為_____

(2)小林和小麗參加雙人項(xiàng)目,比賽規(guī)定:同一小組的兩名同學(xué)的題目類型不能相同,且每人只能抽取一次,求他們抽到天文地理體育健康類題目的概率是多少?(用畫樹狀圖或列表的方法求解).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)的中點(diǎn),以為直角邊向外作等腰,連接,當(dāng)取最大值時(shí),則的度數(shù)是________

查看答案和解析>>

同步練習(xí)冊(cè)答案