【題目】為了推動全社會自覺尊法學法守法用法,促進全面依法治國,某區(qū)每年都舉辦普法知識競賽,該區(qū)某單位甲、乙兩個部門各有員工200人,要在這兩個部門中挑選一個部門代表單位參加今年的競賽,為了解這兩個部門員工對法律知識的掌握情況,進行了抽樣調(diào)查,從甲、乙兩個部門各隨機抽取20名員工,進行了法律知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進行整理,描述和分析,下面給出了部分信息.
a.甲部門成績的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)
b.乙部門成績?nèi)缦拢?/span>
40 52 70 70 71 73 77 78 80 81
82 82 82 82 83 83 83 86 91 94
c.甲、乙兩部門成績的平均數(shù)、方差、中位數(shù)如下:
平均數(shù) | 方差 | 中位數(shù) | |
甲 | 79.6 | 36.84 | 78.5 |
乙 | 77 | 147.2 | m |
d.近五年該單位參賽員工進入復(fù)賽的出線成績?nèi)缦拢?/span>
2014年 | 2015年 | 2016年 | 2017年 | 2018年 | |
出線成績(百分制) | 79 | 81 | 80 | 81 | 82 |
根據(jù)以上信息,回答下列問題:
(1)寫出表中m的值;
(2)可以推斷出選擇 部門參賽更好,理由為 ;
(3)預(yù)估(2)中部門今年參賽進入復(fù)賽的人數(shù)為 .
科目:初中數(shù)學 來源: 題型:
【題目】完成一件事有幾類辦法,各類辦法相互獨立,每類辦法中又有多種不同的辦法,則完成這件事的不同辦法數(shù)是各類不同方法種數(shù)的和,這就是分類計數(shù)原理,也叫做加法原理.完成一件事,需要分成幾個步驟,每一步的完成有多種不同的方法,則完成這件事的不同方法種數(shù)是各種不同的方法數(shù)的乘積,這就是分步計數(shù)原理,也叫做乘法原理.
小王同學參加某高中學校進行的自主招生考試,本次考試共有1000人參加.
(1)1000人參加自招考試,有300人可以享受加分政策,且有10,20,30,60四個檔次,小王想獲得至少30分的加分,那么概率為多少?
(2)若該高中的中考錄取分數(shù)線為530分,小王估得中考分數(shù)可能在500-509,510-519,520-529三個分段,
①若小王的中考分數(shù)在510~519分段,則小王被該高中錄取的概率為多少?
②若小王的中考分數(shù)在三個分數(shù)段對應(yīng)的概率分別為,,,則小王被該高中錄取的概率為多少?
加分 | 人數(shù) |
10 | 30 |
20 | 90 |
30 | 150 |
60 | 30 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解不等式組 請結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得_______________;
(Ⅱ)解不等式②,得_______________;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來;
(Ⅳ)原不等式組的解集為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,M,N,P,Q分別為邊AB,BC,CD,DA上的點(不與端點重合).
對于任意矩形ABCD,下面四個結(jié)論中,①存在無數(shù)個四邊形MNPQ是平行四邊形;②存在無數(shù)個四邊形MNPQ是矩形;③存在無數(shù)個四邊形MNPQ是菱形;④至少存在一個四邊形MNPQ是正方形.所有正確結(jié)論的序號是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等邊△ABC.邊長為3.點D為AC上一點,且CD=1.點E為邊AB上不與A、B重合的一個動點,連接DE,以DE為對稱軸,折疊△AED.點A的對應(yīng)點為F,當點F落在等邊△ABC的邊上時,AE的長為______________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某二次函數(shù)的圖象是一條頂點為P(4.-4)的拋物線,它經(jīng)過原點和點A,它的對稱軸交線段
OA于點M.點N在對移軸上,且點M、N關(guān)于點P對稱,連接AN,ON
(1)求此二次函數(shù)的解析式:
(2)若點A的坐標是(6,-3).,請直接寫出MN的長
(3)若點A在拋物線的對稱軸右側(cè)運動時,則∠ANM與∠ONM有什么數(shù)量關(guān)系?并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF=∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠BAD=,求AD的長;
(3)試探究FB、FD、FA之間的關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在銳角三角形ABC中,AB=8,AC=5,BC=6,沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD,下列結(jié)論:①∠CBD=∠EBD,②DE⊥AB,③三角形ADE的周長是7,④,⑤.其中正確的個數(shù)有( )
A.2B.3C.4D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com