【題目】如圖,在矩形中,,,點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn),將沿折疊,得到.連接、,若為等腰三角形,則的長為_______.
【答案】、、
【解析】
當(dāng)?shù)?/span>B′在矩形的內(nèi)部時(shí),分三種情形考慮:①DA=DB′.②AD=AB′.③B′A=B′D.當(dāng)點(diǎn)B′落在矩形的外部時(shí),有一種情形DA=DB′,分別求解即可.
解:如圖,過點(diǎn)B′作MN⊥CD于M,交AB于N,
∵四邊形ABCD是矩形,
∴AD=BC=13,CD=AB=24,∠ABC=∠BCD=∠CDA=∠DAB=90°,
又∵MN⊥CD,
∴四邊形ANMD是矩形,四邊形BCMN是矩形,
∴AD=MN=13,AN=DM,MC=BN,
若AD=DB′=13,
∵將△CBE沿CE折疊,得到△CB′E連接AB′,
∴BC=B′C=13,BE=B′E,
∴B′C=B′D,
又∵MN⊥CD,
∴CM=DM=12,
∴B′M=,
∴B′N=13-5=8,
∵B′E2=NE2+B′N2,
∴BE2=64+(12BE)2,
∴BE=;
∵AB′的最小值=ACCB′=,
AB′>AD,
當(dāng)B′A=B′D時(shí),
∵B′M=B′N,
∴CB′=2B′M,
∴∠B′CM=30°,
∴∠ECB=∠ECB′=30°,
∴BE=CBtan30°=,
如圖當(dāng)點(diǎn)B′在直線CD的上方,AD=DB′時(shí),
同法可知DM=CM=12,MB′=5,
在Rt△ENB′中,則有BE2=(BE12)2+182,
解得BE=,
綜上所述,滿足條件的BE的值為或或,
故答案為:、、
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校團(tuán)委發(fā)起“愛心儲(chǔ)蓄”活動(dòng),鼓勵(lì)學(xué)生將自己的壓歲錢存入銀行,定期一年,到期后取回本金,而把利息捐給家庭貧困的兒童.學(xué)校共有學(xué)生1200人全部參加了此項(xiàng)活動(dòng),圖1是該校各年級(jí)學(xué)生人數(shù)比例分布的扇形統(tǒng)計(jì)圖,圖2是該校學(xué)生人均存款情況的條形統(tǒng)計(jì)圖.
(1)求該學(xué)校的人均存款數(shù);
(2)若銀行一年定期存款的年利率是2.25%,且每702元能提供給1位家庭貧困兒童一年的基本費(fèi)用,那么該學(xué)校一年能夠幫助多少位家庭貧困兒童?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4),B(4,2),C(3,5)(每個(gè)方格的邊長均為1個(gè)單位長度).
(1)請畫出△A1B1C1,使△A1B1C1與△ABC關(guān)于x軸對稱;
(2)將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點(diǎn)B旋轉(zhuǎn)到點(diǎn)B2所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【題目】如圖①,一次函數(shù) y= x - 2 的圖像交 x 軸于點(diǎn) A,交 y 軸于點(diǎn) B,二次函數(shù) y= x2 bx c的圖像經(jīng)過 A、B 兩點(diǎn),與 x 軸交于另一點(diǎn) C.
(1)求二次函數(shù)的關(guān)系式及點(diǎn) C 的坐標(biāo);
(2)如圖②,若點(diǎn) P 是直線 AB 上方的拋物線上一點(diǎn),過點(diǎn) P 作 PD∥x 軸交 AB 于點(diǎn) D,PE∥y 軸交 AB 于點(diǎn) E,求 PD+PE 的最大值;
(3)如圖③,若點(diǎn) M 在拋物線的對稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點(diǎn) M的坐標(biāo).
① ② ③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題背景:如圖①,BC是⊙O的直徑,點(diǎn)A在⊙O上,AB=AC,P為上一動(dòng)點(diǎn)(不與B,C重合),求證:PA=PB+PC.請你根據(jù)圖中所給的軸助線,給出作法并完成證明過程.
(2)類比遷移:如圖②,⊙O的半徑為3,點(diǎn)A,B在⊙O上,C為⊙O內(nèi)一點(diǎn),AB=AC,AB⊥AC,垂足為A,求OC的最小值
(3)拓展延伸:如圖③,⊙O的半徑為3,點(diǎn)A,B在⊙O上,C為⊙O內(nèi)一點(diǎn),AB= AC,AB⊥AC,垂足為A,則OC的最小值為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AB=4,BC=2,正方形ADEF的邊長為2,F、A、B在同一直線上,正方形ADEF向右平移到點(diǎn)F與B重合,點(diǎn)F的平移距離為x,平移過程中兩圖重疊部分的面積為y,則y與x的關(guān)系的函數(shù)圖象表示正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點(diǎn),分別是邊,上的動(dòng)點(diǎn),沿所在的直線折疊,使點(diǎn)的對應(yīng)點(diǎn)始終落在邊上,若為直角三角形,則的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形ABCD中,點(diǎn)E在CB的延長線上,使CE=AC,連接AE,點(diǎn)F是AE的中點(diǎn),連接BF、DF,求證:BF⊥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,開口向下的拋物線與軸交于點(diǎn)、,與軸交于點(diǎn),點(diǎn)是第一象限內(nèi)拋物線上的一點(diǎn).
(1)求該拋物線所對應(yīng)的函數(shù)解析式;
(2)設(shè)四邊形的面積為,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com