【題目】【題目】如圖①,一次函數(shù) y= x - 2 的圖像交 x 軸于點(diǎn) A,交 y 軸于點(diǎn) B,二次函數(shù) y= x2 bx c的圖像經(jīng)過 A、B 兩點(diǎn),與 x 軸交于另一點(diǎn) C.
(1)求二次函數(shù)的關(guān)系式及點(diǎn) C 的坐標(biāo);
(2)如圖②,若點(diǎn) P 是直線 AB 上方的拋物線上一點(diǎn),過點(diǎn) P 作 PD∥x 軸交 AB 于點(diǎn) D,PE∥y 軸交 AB 于點(diǎn) E,求 PD+PE 的最大值;
(3)如圖③,若點(diǎn) M 在拋物線的對(duì)稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點(diǎn) M的坐標(biāo).
① ② ③
【答案】(1) y= , C(1,0);(2)6;(3) M的坐標(biāo)為(, )或(, ).
【解析】試題分析:(1)先求出A、B的坐標(biāo),然后把A、B的坐標(biāo)分別代入二次函數(shù)的解析式,解方程組即可得到結(jié)論;
(2)先證明△PDE∽△OAB,得到PD=2PE.設(shè)P(m, ),則E(m, ),PD+PE=3PE,然后配方即可得到結(jié)論.
(3)分兩種情況討論:①當(dāng)點(diǎn)M在在直線AB上方時(shí),則點(diǎn)M在△ABC的外接圓上,如圖1.求出圓心O1的坐標(biāo)和半徑,利用MO1=半徑即可得到結(jié)論.
②當(dāng)點(diǎn)M在在直線AB下方時(shí),作O1關(guān)于AB的對(duì)稱點(diǎn)O2,如圖2.求出點(diǎn)O2的坐標(biāo),算出DM的長(zhǎng),即可得到結(jié)論.
試題解析:解:(1)令y==0,得:x=4,∴A(4,0).
令x=0,得:y=-2,∴B(0,-2).
∵二次函數(shù)y=的圖像經(jīng)過A、B兩點(diǎn),∴,解得: ,
∴二次函數(shù)的關(guān)系式為y=.
令y==0,解得:x=1或x=4,∴C(1,0).
(2)∵PD∥x軸,PE∥y軸,∴∠PDE=∠OAB,∠PED=∠OBA,∴△PDE∽△OAB.∴===2,∴PD=2PE.設(shè)P(m, ),則E(m, ).
∴PD+PE=3PE=3×[()-()]==.
∵0<m<4,∴當(dāng)m=2時(shí),PD+PE有最大值6.
(3)①當(dāng)點(diǎn)M在在直線AB上方時(shí),則點(diǎn)M在△ABC的外接圓上,如圖1.
∵△ABC的外接圓O1的圓心在對(duì)稱軸上,設(shè)圓心O1的坐標(biāo)為(,-t).
∴=,解得:t=2,∴圓心O1的坐標(biāo)為(,-2),∴半徑為.
設(shè)M(,y).∵MO1=,∴,解得:y=,∴點(diǎn)M的坐標(biāo)為().
②當(dāng)點(diǎn)M在在直線AB下方時(shí),作O1關(guān)于AB的對(duì)稱點(diǎn)O2,如圖2.
∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x軸,∴∠O1BA=∠OAB,∴∠O1AB=∠OAB,O2在x軸上,∴點(diǎn)O2的坐標(biāo)為 (,0),∴O2D=1,∴DM==,∴點(diǎn)M的坐標(biāo)為(, ).
綜上所述:點(diǎn)M的坐標(biāo)為(, )或(, ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點(diǎn),點(diǎn)是該直線上一點(diǎn),滿足.
(1)求點(diǎn)的坐標(biāo);
(2)若點(diǎn)是直線上另外一點(diǎn),滿足,且四邊形是平行四邊形,試畫出符合要求的大致圖形,并求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉興某校組織了“垃圾分類”知識(shí)競(jìng)賽活動(dòng),獲獎(jiǎng)同學(xué)在競(jìng)賽中的成績(jī)繪成如下圖表,
根據(jù)圖表提供的信息解答下列問題:
垃圾分類知識(shí)競(jìng)賽活動(dòng)成績(jī)統(tǒng)計(jì)表
分?jǐn)?shù)段 | 頻數(shù) | 頻數(shù)頻率 |
80≤x<85 | x | 0.2 |
85≤x<90 | 80 | y |
90≤x<95 | 60 | 0.3 |
95≤x<100 | 20 | 0.1 |
(1)求本次獲獎(jiǎng)同學(xué)的人數(shù);
(2)求表中x,y的數(shù)值:并補(bǔ)全頻數(shù)分布直方圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若A﹣B=1,則稱A與B是關(guān)于1的單位數(shù).
(1)3與______是關(guān)于1的單位數(shù),x﹣3與______是關(guān)于1的單位數(shù).(填一個(gè)含x的式子)
(2)若A=3x(x+2)﹣1,,判斷A與B是否是關(guān)于1的單位數(shù),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)沿東西方向的公路送旅客,如果約定向東為正,向西為負(fù),當(dāng)天的歷史記錄如下(單位:千米)
,,,,,,,,,
(1)出租車司機(jī)最后到達(dá)的地方在出發(fā)點(diǎn)的哪個(gè)方向?距出發(fā)點(diǎn)多遠(yuǎn)?
(2)出租車司機(jī)最遠(yuǎn)離出發(fā)點(diǎn)有多遠(yuǎn)?
(3)若汽車每千米耗油量為升,則這天共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】福建省教育廳日前發(fā)布文件,從2019年開始,體育成績(jī)將按一定的原始分計(jì)入中考總分。某校為適應(yīng)新的中考要求,決定為體育組添置一批體育器材。學(xué)校準(zhǔn)備在網(wǎng)上訂購一批某品牌足球和跳繩,在查閱天貓網(wǎng)店后發(fā)現(xiàn)足球每個(gè)定價(jià)150元,跳繩每條定價(jià)30元.現(xiàn)有A、B兩家網(wǎng)店均提供包郵服務(wù),并提出了各自的優(yōu)惠方案.
A網(wǎng)店:買一個(gè)足球送一條跳繩;
B網(wǎng)店:足球和跳繩都按定價(jià)的90%付款.
已知要購買足球40個(gè),跳繩x條(x>40)
(1)若在A網(wǎng)店購買,需付款 元(用含x的代數(shù)式表示).
若在B網(wǎng)店購買,需付款 元(用含x的代數(shù)式表示).
(2)若x=100時(shí),通過計(jì)算說明此時(shí)在哪家網(wǎng)店購買較為合算?
(3)當(dāng)x=100時(shí),你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法,
并計(jì)算需付款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某林場(chǎng)要考察一種幼樹在一定條件下的移植成活率,在移植過程中的統(tǒng)計(jì)結(jié)果如下表所示:
移植的幼樹n/棵 | 500 | 1000 | 2000 | 4000 | 7000 | 10000 | 12000 | 15000 |
成活的幼樹m/棵 | 423 | 868 | 1714 | 3456 | 6020 | 8580 | 10308 | 12915 |
成活的頻率 | 0.846 | 0.868 | 0.857 | 0.864 | 0.860 | 0.858 | 0.859 | 0.861 |
在此條件下,估計(jì)該種幼樹移植成活的概率為_________________(精確到);若該林場(chǎng)欲使成活的幼樹達(dá)到4.3萬棵,則估計(jì)需要移植該種幼樹_________萬棵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分6分)某公司調(diào)查某中學(xué)學(xué)生對(duì)其環(huán)保產(chǎn)品的了解情況,隨機(jī)抽取該校部分學(xué)生進(jìn)行問卷,結(jié)果分“非常了解”、“比較了解”、“一般了解”、“不了解”四種類型,分別記為A、B、C、D.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.
(1)本次問卷共隨機(jī)調(diào)查了 名學(xué)生,扇形統(tǒng)計(jì)圖中m= .
(2)請(qǐng)根據(jù)數(shù)據(jù)信息補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校有1000名學(xué)生,估計(jì)選擇“非常了解”、“比較了解”共約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)類比計(jì)算
①6×12=1×2×3;
②6×22=2×3×5﹣1×2×3;
③6×32=3×4×7﹣2×3×5;
④6×42=4×5×9﹣3×4×7;
⑤ ;
(2)規(guī)律提煉
寫出第n個(gè)式子(用含字母n的式子表示).
(3)問題解決
求12+22+33+42+…+592+602的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com