【題目】1)計算:①13+(﹣22)﹣(﹣2

②﹣4

③(×(﹣48

④﹣14﹣(1[23+(﹣32]

2)化簡:①(3mn2m2+(﹣4m25mn

②﹣(2a3b)﹣2(﹣a+4b1

3)先化簡再求值:7x2y22x2y3xy2-4x2yxy2),其中x=﹣2y1

【答案】1)①-7,②0,③-480,④﹣;(2)①﹣2mn6m2,②﹣5b+2;(3)﹣x2y+7xy2,﹣18

【解析】

1)①原式利用減法法則變形,計算即可求出值;

②原式先計算除法運算,再計算加減運算即可求出值;

③原式利用乘法分配律計算即可求出值;

④原式先計算乘方運算,再計算乘法運算,最后算加減運算即可求出值;

2)①原式去括號合并即可得到結(jié)果;

②原式去括號合并即可得到結(jié)果;

3)原式去括號合并得到最簡結(jié)果,把xy的值代入計算即可求出值.

1)①原式=1322+2=7;

原式=4+2.6+=0

③原式=(﹣44+40+14×-48=-480;

④原式=1--×1=

2)①原式=3mn2m24m25mn=2mn6m2;

②原式=

3)原式=7x2y4x2y+6xy24x2y+xy2=x2y+7xy2,

x=2,y=1時,原式=414=18

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD⊙O的直徑,點PCD延長線上的一點,且AP=AC

1)求證:PA⊙O的切線;

2)若PD=,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知ABC是等腰直角三角形,∠BAC=90°,點DBC的中點.作正方形DEFG,使點A、C分別在DGDE上,連接AE,BG

1)求證:AE=BG

2)將正方形DEFG繞點D逆時針方向旋轉(zhuǎn)αα≤360°)如圖2所示,判斷(1)中的結(jié)論是否仍然成立?如果仍成立,請給予證明;如果不成立,請說明理由;

3)若BC=DE=4,當旋轉(zhuǎn)角α為多少度時,AE取得最大值?直接寫出AE取得最大值時α的度數(shù),并利用備用圖畫出這時的正方形DEFG,最后求出這時AF的值.

1 2 備用圖

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把下列各數(shù)填入相應的集合內(nèi):+8.5-30.3,0-3.4,12,-94,-1.2,-2.

1)正數(shù)集合:___________…};

2)整數(shù)集合:___________…};

3)非正整數(shù)集合:_____________…};

4)負分數(shù)集合:________________….

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)圖象的一部分,圖象過點A(-30)對稱軸為直線x=1,給出四個結(jié)論:①c0;②若點B(-1.5,y1)、C(-2.5,y2)為函數(shù)圖象上的兩點,則y1y2;2ab=0; 0.其中正確結(jié)論的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①是一塊瓷磚的圖案,用這種瓷磚鋪設(shè)地面,如果鋪設(shè)成如圖②的圖案,其中完整的圓一共有5個,如果鋪設(shè)成如圖③的圖案,其中完整的圓一共有13個,如果鋪設(shè)成如圖④的圖案,其中完整的圓一共有25個,以此規(guī)律下去,第10個圖中,完整的圓一共有__________個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=2x+2與y軸交于A點,與反比例函數(shù)y=(x>0)的圖象交于點M,過M作MHx軸于點H,且tanAHO=2.

(1)求k的值;

(2)點N(a,1)是反比例函數(shù)y=(x>0)圖象上的點,在x軸上是否存在點P,使得PM+PN最。咳舸嬖,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】郵遞員騎摩托車從郵局出發(fā),先向西騎行10km到達A村,繼續(xù)向西騎行30km到達B村,然后向東騎行70km到達C村,最后回到郵局。

1)以郵局為原點,向東方向為正方向,用1cm表示10km,畫出數(shù)軸,并在該數(shù)軸上表示A、BC三個村莊的位置;

2A村離C村有多遠?

3)若摩托車每千米耗油0.1升,則該郵遞員本次一共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s在一條筆直公路BD的上方A處有一探測儀,如平面幾何圖,AD=24mD=90°,第一次探測到一輛轎車從B點勻速向D點行駛,測得∠ABD=31°,2秒后到達C點,測得∠ACD=50°tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m.

1)求B,C的距離.

2)通過計算,判斷此轎車是否超速.

查看答案和解析>>

同步練習冊答案