【題目】每年的日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買臺節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號的設(shè)備可供選購.經(jīng)調(diào)查:購買臺甲型設(shè)備比購買臺乙型設(shè)備多花萬元,購買臺甲型設(shè)備比購買臺乙型設(shè)備少花萬元.

1)求甲、乙兩種型號設(shè)備每臺的價格;

2)該公司經(jīng)決定購買甲型設(shè)備不少于臺,預(yù)算購買節(jié)省能源的新設(shè)備資金不超過萬元,你認(rèn)為該公司有哪幾種購買方案;

3)在(2)的條件下,已知甲型設(shè)備每月的產(chǎn)量為噸,乙型設(shè)備每月的產(chǎn)量為.若每月要求產(chǎn)量不低于噸,為了節(jié)約資金,請你為該公司設(shè)計一種最省錢的購買方案.

【答案】1)甲萬元,萬元;(2)有種;(3)選購甲型設(shè)備,乙型設(shè)備

【解析】

1)設(shè)甲型設(shè)備每臺的價格為x萬元,乙型設(shè)備每臺的價格為y萬元,根據(jù)購買3臺甲型設(shè)備比購買2臺乙型設(shè)備多花16萬元,購買2臺甲型設(shè)備比購買3臺乙型設(shè)備少花6萬元,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;

2)設(shè)購買甲型設(shè)備m臺,則購買乙型設(shè)備(10m)臺,由購買甲型設(shè)備不少于3臺且預(yù)算購買節(jié)省能源的新設(shè)備的資金不超過110萬元,即可得出關(guān)于m的一元一次不等式組,解之即可得出各購買方案;

3)由每月要求總產(chǎn)量不低于2040噸,可得出關(guān)于m的一元一次不等式,解之結(jié)合(2)的結(jié)論即可找出m的值,再利用總價=單價×數(shù)量求出兩種購買方案所需費(fèi)用,比較后即可得出結(jié)論.

解:(1)設(shè)甲型設(shè)備每臺的價格為萬元,乙型設(shè)備每臺的價格為萬元,

根據(jù)題意得: ,

解得:

答:甲型設(shè)備每臺的價格為萬元,乙型設(shè)備每臺的價格為萬元.

(2)設(shè)購買甲型設(shè)備,則購買乙型設(shè)備,

根據(jù)題意得:

解得:

取非負(fù)整數(shù),

∴該公司有種購買方案,

方案一:購買甲型設(shè)備臺、乙型設(shè)備臺;

方案二:購買甲型設(shè)備臺、乙型設(shè)備臺;

方案三:購買甲型設(shè)備臺、乙型設(shè)備

(3)由題意:,解得:,

當(dāng),購買資金為:(萬元)

當(dāng)m5,購買資金為:(萬元)

,

∴最省錢的購買方案為:選購甲型設(shè)備,乙型設(shè)備

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中,延長使,以為邊作正方形,延長,連接的中點(diǎn),連接分別與交于點(diǎn).則下列說法:①;②;③;④.其中正確的有(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與軸交于點(diǎn),與軸交于兩點(diǎn),其中、是方程的兩根,且

)求拋物線的解析式;

)直線上是否存在點(diǎn),使為直角三角形.若存在,求所有點(diǎn)坐標(biāo);反之說理;

)點(diǎn)軸上方的拋物線上的一個動點(diǎn)(點(diǎn)除外),連、,若設(shè)的面積為 點(diǎn)橫坐標(biāo)為,則在何范圍內(nèi)時,相應(yīng)的點(diǎn)有且只有個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在經(jīng)典朗讀活動中,對全校學(xué)生用ABC、D四個等級進(jìn)行評價,現(xiàn)從中抽取若干名學(xué)生進(jìn)行調(diào)查,繪制出兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中的信息解答下列問題:

(1)被調(diào)查的學(xué)生共有 人,圖2A等級所占的圓心角為_ 度。

(2)補(bǔ)全折線統(tǒng)計圖。

(3)若該校共有學(xué)生1500人,請你估計全校評價B等級學(xué)生的人數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,E、F是對角線BD上不同的兩點(diǎn),下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=6,BAC=90°,點(diǎn)D、EBC邊上的兩點(diǎn),分別沿AD、AE折疊,B、C兩點(diǎn)重合于點(diǎn)F,若DE=5,則AD的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖11,在平面直角坐標(biāo)系中,△OAB的頂點(diǎn)坐標(biāo)分別為O(0,0)A(2,1)、B(1,-2),P(a,b)△OAB的邊AB上一點(diǎn).

1)以原點(diǎn)O為位似中心,在y軸的右側(cè)畫出△OAB的一個位似△OA1B1 ,使它與△OAB的相似比為2:1,并分別寫出點(diǎn)A、P的對應(yīng)點(diǎn)A1、P1的坐標(biāo);

2)畫出將△OAB向左平移2個單位,再向上平移1個單位后的△O2A2B2 ,并寫出點(diǎn)A、P的對應(yīng)點(diǎn)A2、P2的坐標(biāo);

3)判斷△OA1B1△O2A2B2 能否是關(guān)于某一點(diǎn)M為位似中心的位似圖形,若是,請在圖11中標(biāo)出位似中心M,并寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點(diǎn)與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標(biāo)系中,如圖(2).

求(1)拋物線的解析式;

(2)兩盞景觀燈P1、P2之間的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,FCD上一點(diǎn),EBF上一點(diǎn),連接AE、AC、DE.若AB=ACAD=AE,∠BAC=DAE=70°AE平分∠BAC,則下列結(jié)論中:①ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正確的個數(shù)有( 。

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案