【題目】每年的月日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購.經(jīng)調(diào)查:購買臺(tái)甲型設(shè)備比購買臺(tái)乙型設(shè)備多花萬元,購買臺(tái)甲型設(shè)備比購買臺(tái)乙型設(shè)備少花萬元.
(1)求甲、乙兩種型號(hào)設(shè)備每臺(tái)的價(jià)格;
(2)該公司經(jīng)決定購買甲型設(shè)備不少于臺(tái),預(yù)算購買節(jié)省能源的新設(shè)備資金不超過萬元,你認(rèn)為該公司有哪幾種購買方案;
(3)在(2)的條件下,已知甲型設(shè)備每月的產(chǎn)量為噸,乙型設(shè)備每月的產(chǎn)量為噸.若每月要求產(chǎn)量不低于噸,為了節(jié)約資金,請(qǐng)你為該公司設(shè)計(jì)一種最省錢的購買方案.
【答案】(1)甲萬元,乙萬元;(2)有種;(3)選購甲型設(shè)備臺(tái),乙型設(shè)備臺(tái)
【解析】
(1)設(shè)甲型設(shè)備每臺(tái)的價(jià)格為x萬元,乙型設(shè)備每臺(tái)的價(jià)格為y萬元,根據(jù)“購買3臺(tái)甲型設(shè)備比購買2臺(tái)乙型設(shè)備多花16萬元,購買2臺(tái)甲型設(shè)備比購買3臺(tái)乙型設(shè)備少花6萬元”,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;
(2)設(shè)購買甲型設(shè)備m臺(tái),則購買乙型設(shè)備(10m)臺(tái),由購買甲型設(shè)備不少于3臺(tái)且預(yù)算購買節(jié)省能源的新設(shè)備的資金不超過110萬元,即可得出關(guān)于m的一元一次不等式組,解之即可得出各購買方案;
(3)由每月要求總產(chǎn)量不低于2040噸,可得出關(guān)于m的一元一次不等式,解之結(jié)合(2)的結(jié)論即可找出m的值,再利用總價(jià)=單價(jià)×數(shù)量求出兩種購買方案所需費(fèi)用,比較后即可得出結(jié)論.
解:(1)設(shè)甲型設(shè)備每臺(tái)的價(jià)格為萬元,乙型設(shè)備每臺(tái)的價(jià)格為萬元,
根據(jù)題意得: ,
解得:
答:甲型設(shè)備每臺(tái)的價(jià)格為萬元,乙型設(shè)備每臺(tái)的價(jià)格為萬元.
(2)設(shè)購買甲型設(shè)備臺(tái),則購買乙型設(shè)備臺(tái),
根據(jù)題意得:
解得:
∵取非負(fù)整數(shù),∴
∴該公司有種購買方案,
方案一:購買甲型設(shè)備臺(tái)、乙型設(shè)備臺(tái);
方案二:購買甲型設(shè)備臺(tái)、乙型設(shè)備臺(tái);
方案三:購買甲型設(shè)備臺(tái)、乙型設(shè)備臺(tái)
(3)由題意:,解得:,
∴為或
當(dāng)時(shí),購買資金為:(萬元)
當(dāng)m=5時(shí),購買資金為:(萬元)
∵,
∴最省錢的購買方案為:選購甲型設(shè)備臺(tái),乙型設(shè)備臺(tái)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,延長至使,以為邊作正方形,延長交于,連接,,為的中點(diǎn),連接分別與,交于點(diǎn).則下列說法:①;②;③;④.其中正確的有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),與軸交于、兩點(diǎn),其中、是方程的兩根,且.
()求拋物線的解析式;
()直線上是否存在點(diǎn),使為直角三角形.若存在,求所有點(diǎn)坐標(biāo);反之說理;
()點(diǎn)為軸上方的拋物線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)除外),連、,若設(shè)的面積為. 點(diǎn)橫坐標(biāo)為,則在何范圍內(nèi)時(shí),相應(yīng)的點(diǎn)有且只有個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在經(jīng)典朗讀活動(dòng)中,對(duì)全校學(xué)生用A、B、C、D四個(gè)等級(jí)進(jìn)行評(píng)價(jià),現(xiàn)從中抽取若干名學(xué)生進(jìn)行調(diào)查,繪制出兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中的信息解答下列問題:
(1)被調(diào)查的學(xué)生共有 人,圖2中A等級(jí)所占的圓心角為_ 度。
(2)補(bǔ)全折線統(tǒng)計(jì)圖。
(3)若該校共有學(xué)生1500人,請(qǐng)你估計(jì)全校評(píng)價(jià)B等級(jí)學(xué)生的人數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】□ABCD中,E、F是對(duì)角線BD上不同的兩點(diǎn),下列條件中,不能得出四邊形AECF一定為平行四邊形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABC中,AB=AC=6,∠BAC=90°,點(diǎn)D、E為BC邊上的兩點(diǎn),分別沿AD、AE折疊,B、C兩點(diǎn)重合于點(diǎn)F,若DE=5,則AD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖11,在平面直角坐標(biāo)系中,△OAB的頂點(diǎn)坐標(biāo)分別為O(0,0)、A(2,1)、B(1,-2),P(a,b)是△OAB的邊AB上一點(diǎn).
(1)以原點(diǎn)O為位似中心,在y軸的右側(cè)畫出△OAB的一個(gè)位似△OA1B1 ,使它與△OAB的相似比為2:1,并分別寫出點(diǎn)A、P的對(duì)應(yīng)點(diǎn)A1、P1的坐標(biāo);
(2)畫出將△OAB向左平移2個(gè)單位,再向上平移1個(gè)單位后的△O2A2B2 ,并寫出點(diǎn)A、P的對(duì)應(yīng)點(diǎn)A2、P2的坐標(biāo);
(3)判斷△OA1B1與△O2A2B2 ,能否是關(guān)于某一點(diǎn)M為位似中心的位似圖形,若是,請(qǐng)?jiān)趫D11中標(biāo)出位似中心M,并寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點(diǎn)與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標(biāo)系中,如圖(2).
求(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,F是CD上一點(diǎn),E是BF上一點(diǎn),連接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,則下列結(jié)論中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正確的個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com