【題目】小明乘坐一艘游船出海游玩,游船上的雷達掃描探測得到的結(jié)果如圖所示,每相鄰兩個圓之間距離是1km(小圓半徑是1km),若小艇C在游船的正南方2km,則下列關(guān)于小艇A、B的位置描述,正確的是( 。
A.小艇A在游船的北偏東60°,且距游船3km
B.游船在的小艇A北偏東60°,且距游船3km
C.小艇B在游船的北偏西30°,且距游船2km
D.小艇B在小艇C的北偏西30°,且距游船2km
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.“三角形任意兩邊之差小于第三邊”是必然事件
B.在連續(xù)5次的測試中,兩名同學的平均分相同,方差較大的同學成績更穩(wěn)定
C.某同學連續(xù)10次拋擲質(zhì)量均勻的硬幣,6次正面向上,因此正面向上的概率是60%
D.檢測某品牌筆芯的使用壽命,適宜用普查
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,P是AB邊上的任意一點,過P點作PE⊥AB,交AD于E,連結(jié)CE、CP.已知∠A=60o .
(1)試探究,當△CPE≌△CPB時,CD與DE的數(shù)量關(guān)系;
(2)若BC=4,AB=3,當AP的長為多少時,△CPE的面積最大,并求出面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過x軸上的點A(1,0)和點B及y軸上的點C,經(jīng)過B、C兩點的直線為.
①求拋物線的解析式.
②點P從A出發(fā),在線段AB上以每秒1個單位的速度向B運動,同時點E從B出發(fā),在線段BC上以每秒2個單位的速度向C運動.當其中一個點到達終點時,另一點也停止運動.設(shè)運動時間為t秒,求t為何值時,△PBE的面積最大并求出最大值.
③過點A作于點M,過拋物線上一動點N(不與點B、C重合)作直線AM的平行線交直線BC于點Q.若點A、M、N、Q為頂點的四邊形是平行四邊形,求點N的橫坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB為⊙O的直徑,過O點作OC⊥AB且交⊙O于C點,延長AB到D,過點D作⊙O的切線DE,切點為E,連接CE交AB于F點.
(1)求證:DE=DF;
(2)若⊙O的半徑為2,求CF·CE的值;
(3)若⊙O的半徑為2,∠D=30°,則陰影部分的面積 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,點O在△ABC的BC邊上,⊙O經(jīng)過點A、C,且與BC相交于點 D.點E是下半圓弧的中點,連接AE交BC于點F,已知AB=BF.
(1)求證:AB是⊙O的切線;
(2)若OC=3,OF=1,求cosB的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,將對角線AC繞對角線交點O旋轉(zhuǎn),分別交邊AD、BC于點E、F,點P是邊DC上的一個動點,且保持DP=AE,連接PE、PF,設(shè)AE=x(0<x<3).
(1)填空:PC= ,FC= ;(用含x的代數(shù)式表示)
(2)求△PEF面積的最小值;
(3)在運動過程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O上有一個動點A和一個定點B,令線段AB的中點是點P,過點B作⊙O的切線BQ,且BQ=3,現(xiàn)測得的長度是,的度數(shù)是120°,若線段PQ的最大值是m,最小值是n,則mn的值是( )
A. 3 B. 2 C. 9 D. 10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校開展了主題為“垃圾分類,綠色生活新時尚”的宣傳活動,為了解學生對垃圾分類知識的掌握情況,該校環(huán)保社團成員在校園內(nèi)隨機抽取了部分學生進行問卷調(diào)查,將他們的得分按優(yōu)秀、良好、合格、不合格四個等級進行統(tǒng)計,并繪制了如下不完整的統(tǒng)計表和條形統(tǒng)計圖.
等級 | 頻數(shù) | 頻率 |
優(yōu)秀 | 20 | |
良好 | ||
合格 | 10 | |
不合格 | 5 |
請根據(jù)以上信息,解答下列問題:
(1)本次調(diào)查隨機抽取了______名學生;表中______,______;
(2)補全條形統(tǒng)計圖;
(3)若全校有2000名學生,請你估計該校掌握垃圾分類知識達到“優(yōu)秀”和“良好”等級的學生共有多少人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com