【題目】如圖,AB是⊙O的直徑,CD切⊙O于點(diǎn)C,AD交⊙O于點(diǎn)E,AC平分∠BAD,連接BE.
(1)求證:CD⊥ED;
(2)若CD=4,AE=2,求⊙O的半徑.
【答案】(Ⅰ)見解析;(Ⅱ)⊙O的半徑為.
【解析】
(Ⅰ)連接OC,根據(jù)CD切⊙O于點(diǎn)C得出OC⊥DC,由OA=OC,得出∠OAC=∠OCA,則可證明∠OCA=∠DAC,證得OC∥AD,根據(jù)平行線的性質(zhì)即可證明;
(Ⅱ)根據(jù)圓周角定理證得∠AEB=90°,根據(jù)垂徑定理證得EF=BF,進(jìn)而證得四邊形EFCD是矩形,從而證得BE=8,然后根據(jù)勾股定理求得AB,即可求得半徑.
解:(Ⅰ)證明:連接OC,交BE于F,由DC是切線得OC⊥DC;
又∵OA=OC,
∴∠OAC=∠OCA,
∵AC平分∠BAD,
∴∠DAC=∠OAC.
∴∠OCA=∠DAC,
∴OC∥AD,
∴∠D=∠OCD=90°
即CD⊥ED.
(Ⅱ)∵AB是⊙O的直徑,∴∠AEB=90°,
∵∠D=90°,∴∠AEB=∠D,
∴BE∥CD,
∵OC⊥CD,∴OC⊥BE,
∴EF=BF,
∵OC∥ED,
∴四邊形EFCD是矩形,
∴EF=CD=4,∴BE=8,
∵AE=2,
∴AB===2
∴⊙O的半徑為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,將拋物線向右平移2個(gè)單位得到拋物線,且平移后的拋物線經(jīng)過點(diǎn).
求平移后拋物線的表達(dá)式;
設(shè)原拋物線與y軸的交點(diǎn)為B,頂點(diǎn)為P,平移后的新拋物線的對(duì)稱軸與x軸交于點(diǎn)M,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+3與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.
(1)直接寫出A、B、C三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;
(2)連接BC,與拋物線的對(duì)稱軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PF∥DE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線段PF的長(zhǎng),并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),點(diǎn)的坐標(biāo)為,與軸交于點(diǎn),直線與軸交于點(diǎn).動(dòng)點(diǎn)在拋物線上運(yùn)動(dòng),過點(diǎn)作軸,垂足為,交直線于點(diǎn).
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)在線段上時(shí),的面積是否存在最大值,若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說明理由;
(3)點(diǎn)是拋物線對(duì)稱軸與軸的交點(diǎn),點(diǎn)是軸上一動(dòng)點(diǎn),點(diǎn)在運(yùn)動(dòng)過程中,若以為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線.
(1)求證:該拋物線與x軸總有交點(diǎn);
(2)若該拋物線與x軸有一個(gè)交點(diǎn)的橫坐標(biāo)大于3且小于5,求m的取值范圍;
(3)設(shè)拋物線與軸交于點(diǎn)M,若拋物線與x軸的一個(gè)交點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)恰好是點(diǎn)M,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程(m+1)x2﹣2x﹣1=0有兩個(gè)不相等的實(shí)數(shù)根,
(1)求m的取值范圍;
(2)若x=1是方程的一個(gè)根,求m的值和另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)為4cm,∠A=60°,弧BD是以點(diǎn)A為圓心,AB長(zhǎng)為半徑的弧,弧CD是以點(diǎn)B為圓心,BC長(zhǎng)為半徑的弧,則陰影部分的面積為( 。
A. 2cm2B. 4cm2C. 4cm2D. πcm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以為圓心,任意長(zhǎng)為半徑畫弧分別交于點(diǎn)和,再分別以為圓心,大于 的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn),連結(jié)并延長(zhǎng)交于點(diǎn),則下列說法中正確的個(gè)數(shù)是()
①點(diǎn)到的兩邊距離相等;
②點(diǎn)在的中垂線上;
③
④
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小濤根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖像與性質(zhì)進(jìn)行了探究,下面是小濤的探究過程,請(qǐng)補(bǔ)充完整:
(1)下表是與的幾組對(duì)應(yīng)值
... | -2 | -1 | 0 | 1 | 2 | 3 | ... | ||
... | -8 | -3 | 0 | m | n | 1 | 3 | ... |
請(qǐng)直接寫出:=, m=, n=;
(2)如圖,小濤在平面直角坐標(biāo)系中,描出了上表中已經(jīng)給出的部分對(duì)應(yīng)值為坐標(biāo)的點(diǎn),再描出剩下的點(diǎn),并畫出該函數(shù)的圖象;
(3)請(qǐng)直接寫出函數(shù)的圖像性質(zhì):;(寫出一條即可)
(4)請(qǐng)結(jié)合畫出的函數(shù)圖象,解決問題:若方程有三個(gè)不同的解,直接寫出的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com