【題目】已知:如圖,二次函數(shù)y=x2+bx+c的圖象過點A(1,0)和C(0,﹣3)

(1)求這個二次函數(shù)的解析式;

(2)如果這個二次函數(shù)的圖象與x軸的另一個交點為B,求線段AB的長.

(3)在這條拋物線上是否存在一點P,使ABP的面積為8?若存在,求出點P的坐標;若不存在,請說明理由.

【答案】(1)二次函數(shù)的解析式為 ;(2) ;(3)存在,點 的坐標為.

【解析】試題分析:(1)利用待定系數(shù)法把A(1,0),C(0,-3)代入二次函數(shù)y=x2+bx+c中,即可算出b、c的值,進而得到函數(shù)解析式是y=x2+2x-3;
(2)首先求出A、B兩點坐標,再算出AB的長;
(3)設P(m,n),根據△ABP的面積為8可以計算出n的值,然后再利用二次函數(shù)解析式計算出m的值即可得到P點坐標.

試題解析:

(1)依題意把, 代入得:

,解得: ,

∴ 該二次函數(shù)的解析式為 ;

(2)令,則,

解之得: ,

∴ 點B坐標為(-3,0),

又∵

;

(3)存在. 設點坐標為,由得: ,解得: ,

分兩種情況討論:

①當時,點坐標為,則,

解得: ,

, ;

②當時,點坐標為,則,

解得: , ∴ ,

綜上所述,在這條拋物線上存在一點,使△的面積為 ,此時點 的坐標為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,,結論:①;②;③;④,其中正確的是有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AEBF,∠A=60°,點P為射線AE上任意一點(不與點A重合),BCBD分別平分∠ABP和∠PBF,交射線AE于點C,點D

1)圖中∠CBD= °;

2)當∠ACB=ABD時,∠ABC= °;

3)隨點P位置的變化,圖中∠APB與∠ADB之間的數(shù)量關系始終為 ,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ADBC邊上的高,AE是∠BAC的平分線,∠EAD=15°,∠B=40°

1)求∠C的度數(shù).

2)若:∠EAD=α,∠B=β,其余條件不變,直接寫出用含α,β的式子表示∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地要建造一個圓形噴水池,在水池中央垂直于水面安裝一個花形柱子OA,O恰在水面中心,安置在柱子頂端A處的噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下,且在過OA的任一平面上,拋物線形狀如圖(1)所示.圖(2)建立直角坐標系,水流噴出的高度y(米)與水平距離x(米)之間的關系是.請回答下列問題:

(1)柱子OA的高度是多少米?

(2)噴出的水流距水平面的最大高度是多少米?

(3)若不計其他因素,水池的半徑至少要多少米才能使噴出的水流不至于落在池外?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在網格中建立了平面直角坐標系,每個小正方形的邊長均為1個單位長度,將四邊形ABCD繞坐標原點順時針方向旋轉180°后得到四邊形A1B1C1D1

1)寫出點D1的坐標________;

2)將四邊形A1B1C1D1平移,得到四邊形A2B2C2D2,若點D245),畫出平移后的圖形;

3)求點D旋轉到點D1所經過的路線長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了創(chuàng)建書香校園,今年又購進一批圖書,經了解,科普書的單價比文學書的單價多4元,用1200元購進的科普書與用800元購進的文學書本數(shù)相等.

1)今年購進的文學書和科普書的單價各是多少元?

2)該校購買這兩種書共180本,總費用不超過2000元,且購買文學書的數(shù)量不多于42本,應選擇哪種購買方案可使總費用最低?最低費用是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)y=mx+m和函數(shù)y=-mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的方格紙中,小正方形的頂點叫做格點,是一個格點三角形(的三個頂點都在格點上),根據要求回答下列問題:

畫出先向左平移6格,再向上平移格所得的;

利用網格畫出邊上的高.

過點畫直線,將分成面積相等的兩個三角形;

畫出與有一條公共邊,且與全等的格點三角形.

查看答案和解析>>

同步練習冊答案