【題目】已知三角形的三邊分別為3,x,7,那么x的取值范圍是(
A.4<x<10
B.1<x<10
C.3<x<7
D.4<x<6

【答案】A
【解析】解:由題意得:7﹣3<x<7+3, 即4<x<10.
故選:A.
【考點精析】利用三角形三邊關(guān)系對題目進行判斷即可得到答案,需要熟知三角形兩邊之和大于第三邊;三角形兩邊之差小于第三邊;不符合定理的三條線段,不能組成三角形的三邊.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,BD是一條對角線,點P在CD上(與點C,D不重合),連接AP,平移△ADP,使點D移動到點C,得到△BCQ,過點Q作QM⊥BD于M,連接AM,PM(如圖1).

(1)判斷AM與PM的數(shù)量關(guān)系與位置關(guān)系并加以證明;

(2)若點P在線段CD的延長線上,其它條件不變(如圖2),(1)中的結(jié)論是否仍成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,EF∥AD,∠1=∠2,∠B=35°,將求∠BDG的過程填寫完整。

解: ∵EF∥AD,

∴∠2=____ (________________________________)

又∵∠1=∠2

∴∠1= ( 等量代換 )

∴DG∥_____ (___________________________________)

∴∠B+______=180°(___________________________)

∵∠B=35°

∴∠BDG =_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解參加某運動會的300名運動員的年齡情況,從中抽查了25名運動員的年齡,就這個問題來說,樣本是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖、、中,點E、D分別是正△ABC、正四邊形ABCM、正五邊形ABCMN中以C點為頂點的相鄰兩邊上的點,且BE=CD,DBAEP點.

1)分別求圖,圖和圖中,∠APD的度數(shù).

2)根據(jù)前面探索,你能否將本題推廣到一般的正n邊形情況?若能,寫出推廣問題和結(jié)論;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把一張長方形紙片ABCD沿EF折疊后EDBC的交點為G、D、C分別在M、N的位置上,若∠EFG=55°,則∠1=______°,∠2=_______°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】倡導(dǎo)研究性學習方式,著力教材研究,習題研究,是學生跳出題海,提高學習能力和創(chuàng)新能力的有效途徑.下面是一案例,請同學們認真閱讀、研究,完成“類比猜想”及后面的問題.

習題解答

習題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,說明理由.

解:

∵正方形ABCD中,AB=AD,∠BAD=∠ADC=90°

∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADE′,點F、D、E′在一條直線上.

∴∠E′AF=90°-45°=45°=∠EAF.

又∵AE′=AE,AF=AF

∴△AE′FF≌△AEF(SAS)

∴EF=E′F=DE′+DF=BE+DF.

習題研究.

觀察分析:

觀察圖1,由解答可知,該題有用的條件是①.ABCD是四邊形,點E、F分別在邊BC、CD上;②.AB=AD;③.∠B=∠D=90°∠;④.∠EAF=∠BAD.

類比猜想:

在四邊形ABCD中,點E、F分別在BC、CD上,當AB=AD,∠B=∠D時,還有EF=BE+DF嗎?

要解決上述問題,可從特例入手,請同學們思考:如圖2,在菱形ABCD中,點E、F分別在BC、CD上,當∠BAD=120°,∠EAF=60°時,還有EF=BE+DF嗎?試證明.

(2)在四邊形ABCD中,點E、F分別在邊BC、CD上,當AB=AD,∠B+∠D=180°,∠EAF=∠BAD時,還有EF=BE+DF嗎?使用圖3證明.

歸納概括:

反思前面的解答,思考每個條件的作用,可以得到一個結(jié)論“EF=BE+DF”的一般命題:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各組單項式中,是同類項的一組是( )

A. 3x3y3xy3 B. 2ab2-3a2b C. a2b2 D. 2xy3 yx

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,BC=16,將矩形ABCD沿EF折疊,使點C與點A重合,則折痕EF的長為__________

查看答案和解析>>

同步練習冊答案