【題目】閱讀材料,解答下列問題:

例:當a=5,則|a|=|5|=5,故此時a的絕對值是它本身;當a=0時,|a|=0,故此時a的絕對值是0;當a0時,如a=5,則|a|=|5|=﹣(-5=5,故此時a的絕對值是它的相反數(shù).請仿照圖例中的分類討論,解決下面的問題:

1|4+5|=   ;|3|=   ;

2)如果|x+1|=2,求x的值;

3)若數(shù)軸上表示數(shù)a的點位于﹣35之間,求|a+3|+|a5|的值.

【答案】11,;(2;(38.

【解析】

1)根據(jù)絕對值的意義求解即可;

2)根據(jù)絕對值的意義可得,進一步即可求出結(jié)果;

3)先判斷a+3a5的正負,再根據(jù)絕對值的意義化簡絕對值,然后合并同類項即可.

解;(1,.

故答案為:1,;

2)因為的絕對值都是2,,即,解得:

3)因為數(shù)軸上表示數(shù)a的點位于﹣35之間,所以,

所以.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點E是邊AC上一點,線段BE垂直于∠BAC的平分線于點D,點M為邊BC的中點,連接DM

(1)求證: DMCE;

(2)AD6,BD8,DM2,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

材料1:數(shù)學上有一種根號內(nèi)又帶根號的數(shù),它們能通過完全平方式及二次根式的性質(zhì)化去一層(或多層)根號.如: ;

材料2: 配方法是初中數(shù)學思想方法中的一種重要的解題方法。配方法的最終目的就是配成完全平方式,利用完全平方式來解決問題。它的應用非常廣泛,在解方程、求最值、證明等式、化簡根式、因式分解等方面都經(jīng)常用到。

如:

,∴

的最小值為1.

根據(jù)以上材料解決下列問題:

1)填空:=________________;=______________;

2)求的最小值;

3)已知,求的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法:① 平方等于64的數(shù)是8;② a,b互為相反數(shù),ab≠0,;③ ,則的值為負數(shù);④ ab≠0,則的取值在0,1,2,-2這四個數(shù)中,不可取的值是0.正確的個數(shù)為( )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,點A1,B1,C1分別是BC、AC、AB的中點,A2,B2,C2分別是B1C1,A1C1,A1B1的中點,依此類推.若△ABC的周長為1,則△AnBnCn的周長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ADABC的中線,EAD的中點,過點AAFBCBE延長線于點F,連接CF.

(1)如圖1,求證:四邊形ADCF是平行四邊形;

(2)如圖2.連接CE,在不添加任何助線的情況下,請直接寫出圖2中所有與BEC面積相等的三角形。

1 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知雙曲線:與拋物線:y=ax2+bx+c交于A(2,3)、B(m,2)、C(﹣3,n)三點.

(1)求雙曲線與拋物線的解析式;

(2)在平面直角坐標系中描出點A、點B、點C,并求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,連接對角線AC、BD,將ABC沿BC方向平移,使點B移到點C,得到DCE.

(1)求證:ACD≌△EDC;

(2)請?zhí)骄?/span>BDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究:

如圖,拋物線y=x2x4x軸交與AB兩點(點B在點A的右側(cè)),與y軸交于點C,連接BC,以BC為一邊,點O為對稱中心作菱形BDEC,點Px軸上的一個動點,設(shè)點P的坐標為(m,0),過點Px軸的垂線l交拋物線于點Q

1)求點A,B,C的坐標.

2)當點P在線段OB上運動時,直線l分別交BD,BC于點MN.試探究m為何值時,四邊形CQMD是平行四邊形,此時,請判斷四邊形CQBM的形狀,并說明理由.

3)當點P在線段EB上運動時,是否存在點Q,使BDQ為直角三角形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案