【題目】某校就遇見路人摔倒后如何處理的問題,隨機抽取該校部分學生進行問卷調查,圖1和圖2是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)該校隨機抽查了 名學生.

(2)將圖1補充完整;

(3)在圖2中,求視情況而定部分所占的圓心角度數(shù).

【答案】(1)200;(2)詳見解析;(3)

【解析】

(1)用處理方式為D的人數(shù)除以所占的百分比即可求出總人數(shù);

(2)用總人數(shù)減去A、B、D的人數(shù),即可求出C的人數(shù),從而補全統(tǒng)計圖;

(3)用360°乘以視情況而定所占的百分比即可求出答案.

(1)該校隨機抽查了200名學生.

(2)補圖如右:

(3)“視情況而定的人數(shù)是:200-16-120-24=40(名),

視情況而定部分所占的圓心角是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某景點的門票價格如表:

購票人數(shù)/

1~50

51~100

100以上

每人門票價/

12

10

8

某校七年級(1)、(2)兩班計劃去游覽該景點,其中(1)班人數(shù)少于50人,(2)班人數(shù)多于50人且少于100人,如果兩班都以班為單位單獨購票,則一共支付1118元;如果兩班聯(lián)合起來作為一個團體購票,則只需花費816元.

(1)兩個班各有多少名學生?

(2)團體購票與單獨購票相比較,兩個班各節(jié)約了多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AMAN,AB平分∠MAN,過點BBCBAAN于點C;動點ED同時從A點出發(fā),其中動點E2cm/s的速度沿射線AN方向運動,動點D1cm/s的速度在直線AM上運動;已知AC=6cm,設動點D,E的運動時間為ts

(1)試求∠ACB的度數(shù);

(2)若=2:3,試求動點D,E的運動時間t的值;

(3)試問當動點D,E在運動過程中,是否存在某個時間t,使得ADB≌△CEB?若存在,請求出時間t的值;若不存在,請說出理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,分別以頂點A、B、C、D為圓心,1為半徑畫弧,四條弧交于點E、F、G、H,則圖中陰影部分的外圍周長為( 。

A.
B.
C.π
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.

(1)AEFC會平行嗎?說明理由

(2)ADBC的位置關系如何?為什么?

(3)BC平分∠DBE?為什么

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義,如圖1,點M,N把線段AB分割成AM,MNBN,若以AM,MN,BN為邊的三角形是一個直角三角形,則稱點M,N為線段AB的勾股分割點.

(1)已知點M,N是線段AB的勾股分割點,若AM=3,MN=5,求BN的長

(2)如圖2,在RtABC中,AC=BC,點M,N在斜邊AB上,∠MCN=45°,求證:點M,N是線段AB的勾股分割點;陽陽在解決第(2)小題時遇到了困難,陳老師對陽陽說:要證明勾股分割點,則需設法構造直角三角形,你可以把CBN繞點C逆時針旋轉90度試試,請根據(jù)陳老師的提示完成證明過程.

(3)如圖3,C是線段AB上的一定點,請在BC上畫一點D,使C、D是線段AB的勾股分割點

(要求:完成尺規(guī)作圖,保留作圖痕跡,并在右側分步寫出作圖步驟)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCBD、CD平分ABC、ACB,過D作直線平行于BC,交AB、ACEF,當A的位置及大小變化時,線段EFBE+CF的大小關系( 。

A. B. C. D. 不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點B、C、D在同一條直線上,△ABC△CDE都是等邊三角形.BEACF,ADCEH,

求證:△BCE≌△ACD;

求證:CF=CH;

判斷△CFH的形狀并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】3分)如圖,AD△ABC的角平分線,DE⊥AC,垂足為EBF∥ACED的延長線于點F,若BC恰好平分∠ABFAE=2BF.給出下列四個結論:①DE=DF;②DB=DC③AD⊥BC;④AC=3BF,其中正確的結論共有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

同步練習冊答案