【題目】如圖,ABCBD、CD平分ABC、ACB,過D作直線平行于BC,交AB、ACEF,當(dāng)A的位置及大小變化時,線段EFBE+CF的大小關(guān)系( 。

A. B. C. D. 不能確定

【答案】B

【解析】

根據(jù)平行線的性質(zhì)和角平分線的性質(zhì),解出△BED△CFD是等腰三角形,通過等量代換即可得出結(jié)論.

解:由BD平分∠ABC得,∠EBD=∠ABC

∵EF∥BC,

∴∠AEF=∠ABC=2∠EBD,∠AEF=∠EBD+∠EDB,

∴∠EBD=∠EDB,

∴△BED是等腰三角形,

∴ED=BE

同理可得,DF=FC,(△CFD是等腰三角形)

∴EF=ED+EF=BE+FC,

∴EF=BE+CF

故選B

本題綜合考查了等腰三角形的性質(zhì)及平行線的性質(zhì);一般是利用等腰(等邊)三角形的性質(zhì)得出相等的邊,進(jìn)而得出結(jié)果.進(jìn)行等量代換是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,A(2018,0),B(0,2014),以 AB 為斜邊作等腰RtABC,則 C點坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)有一塊長方形水稻試驗田,試驗田的長、寬(如圖所示,長度單位:米),試驗田分兩部分,一部分為水渠,另一部分為新型水稻種植田(陰影部分).

(1)用含a,b的式子表示新型水稻種植田的面積是多少平方米(結(jié)果化成最簡形式);

(2)a=30,b=40,在農(nóng)民豐收節(jié)到來之時水稻成熟,計劃先由甲型收割機(jī)收割一部分,再由乙型收割機(jī)收割剩余部分,甲型收割機(jī)收割水稻每平方米的費(fèi)用為0.3元,乙型收割機(jī)收割水稻每平方米的費(fèi)用為0.5元,若要收割全部水稻的費(fèi)用不超過5000元,問甲型收割機(jī)最少收割多少平方米的水稻?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校就遇見路人摔倒后如何處理的問題,隨機(jī)抽取該校部分學(xué)生進(jìn)行問卷調(diào)查,圖1和圖2是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)該校隨機(jī)抽查了 名學(xué)生.

(2)將圖1補(bǔ)充完整;

(3)在圖2中,求視情況而定部分所占的圓心角度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為6,B是數(shù)軸上一點,且AB=10,動點P從點A出發(fā),以每秒6個單位長度的速度沿數(shù)軸向左勻速運(yùn)動,設(shè)運(yùn)動時間為t(t>0)秒,

(1)寫出數(shù)軸上點B所表示的數(shù)   ;

(2)點P所表示的數(shù)   ;(用含t的代數(shù)式表示);

(3)MAP的中點,NPB的中點,點P在運(yùn)動的過程中,線段MN的長度是否發(fā)生變化?若變化,說明理由;若不變,請你畫出圖形,并求出線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:
如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關(guān)系.
小吳同學(xué)探究此問題的思路是:將△BCD繞點D,逆時針旋轉(zhuǎn)90°到△AED處,點B,C分別落在點A,E處(如圖②),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE= CD,從而得出結(jié)論:AC+BC= CD.
簡單應(yīng)用:

(1)在圖①中,若AC= ,BC=2 ,則CD=
(2)如圖③,AB是⊙O的直徑,點C、D在⊙上, = ,若AB=13,BC=12,求CD的長.
拓展規(guī)律:
(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(用含m,n的代數(shù)式表示)
(4)如圖⑤,∠ACB=90°,AC=BC,點P為AB的中點,若點E滿足AE= AC,CE=CA,點Q為AE的中點,則線段PQ與AC的數(shù)量關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示,E為矩形ABCD的邊AD上一點,動點P、Q同時從點B出發(fā),點P以1cm/秒的速度沿折線BE﹣ED﹣DC運(yùn)動到點C時停止,點Q以2cm/秒的速度沿BC運(yùn)動到點C時停止.設(shè)P、Q同時出發(fā)t秒時,△BPQ的面積為ycm2 . 已知y與t的函數(shù)關(guān)系圖像如圖(2)(其中曲線OG為拋物線的一部分,其余各部分均為線段).

(1)試根據(jù)圖(2)求0<t≤5時,△BPQ的面積y關(guān)于t的函數(shù)解析式;
(2)求出線段BC、BE、ED的長度;
(3)當(dāng)t為多少秒時,以B、P、Q為頂點的三角形和△ABE相似;
(4)如圖(3)過E作EF⊥BC于F,△BEF繞點B按順時針方向旋轉(zhuǎn)一定角度,如果△BEF中E、F的對應(yīng)點H、I恰好和射線BE、CD的交點G在一條直線,求此時C、I兩點之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生成一種節(jié)能產(chǎn)品,投放市場供不應(yīng)求.若該企業(yè)每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于50萬元,每套產(chǎn)品的售價不低于120萬元.已知這種產(chǎn)品的月產(chǎn)量x(套)與每套的售價y1(萬元)之間滿足關(guān)系式y(tǒng)1=190﹣2x.月產(chǎn)量x(套)與生成總成本y2(萬元)存在如圖所示的函數(shù)關(guān)系.

(1)直接寫出y2(2)與x之間的函數(shù)關(guān)系式;
(2)求月產(chǎn)量x的取值范圍;
(3)當(dāng)月產(chǎn)量x(套)為多少時,這種產(chǎn)品的利潤W(萬元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解九年級學(xué)生的體能情況,抽調(diào)了一部分學(xué)生進(jìn)行一分鐘跳繩測試,將測試成績整理后作出如圖所示的統(tǒng)計圖. 甲同學(xué)計算出前兩組的頻率和是0.12,乙同學(xué)計算出跳繩次數(shù)不少于100次的同學(xué)占96%,丙同學(xué)計算出從左至右第二、三、四組的頻數(shù)的比為41715,則本次測試共抽調(diào)的人數(shù)為( )

A. 120 B. 150 C. 180 D. 無法確定

查看答案和解析>>

同步練習(xí)冊答案