【題目】(探究)用“>”、“<”、“≤”、“≥”或“=”填空,并探究規(guī)律:
(1)4+5 2;
(2)3+ 2;
(3)1+ 2;
(4)a+1 2(a>0).
(發(fā)現(xiàn))用一句話概括你發(fā)現(xiàn)的規(guī)律: ;
(表達)用符號語言寫出你發(fā)現(xiàn)的規(guī)律并加以證明;
(應(yīng)用)若a>0,求a+的最小值.
【答案】探究:(1)>,(2)>,(3)>,(4)≥;發(fā)現(xiàn):兩個正數(shù)的和大于等于這兩數(shù)乘積的算術(shù)平方根的2倍;表達: a+b≥2,a>0,b>0);應(yīng)用:2
【解析】
﹝發(fā)現(xiàn)﹞根據(jù)前面4個填空題即可得出規(guī)律;
﹝表達﹞將這兩個數(shù)表示為a、b,得到關(guān)系式即可;
﹝應(yīng)用﹞利用公式代入計算即可得到答案.
﹝發(fā)現(xiàn)﹞通過計算即可完成,
故答案為>,>,>,≥;
﹝表達﹞故答案為:兩個正數(shù)的和大于等于這兩數(shù)乘積的算術(shù)平方根的2倍;
故答案為:a+b≥2(a>0,b>0);
﹝應(yīng)用﹞由歸納的公式可知,,
∴的最小值是2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣x+m的圖象經(jīng)過點A(1,﹣2)
(1)求此函數(shù)圖像與坐標(biāo)軸的交點坐標(biāo);
(2)若P(-2,y1),Q(5,y2)兩點在此函數(shù)圖像上,試比較y1,y2的大小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,點O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC、AB相交于點D、E,連接AD,已知∠CAD=∠B.
(1)求證:AD是⊙O的切線;
(2)若∠B=30°,AC=,求劣弧BD與弦BD所圍陰影圖形的面積;
(3)若AC=4,BD=6,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線的頂點為A,拋物線的頂點為B,其中m≠﹣2,拋物線與相交于點P.
(1)當(dāng)m=﹣3時,在所給的平面直角坐標(biāo)系中畫出C1,C2的圖象;
(2)已知點C(﹣2,1),求證:點A,B,C三點共線;
(3)設(shè)點P的縱坐標(biāo)為q,求q的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山西特產(chǎn)專賣店銷售核桃,其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:
(1)每千克核桃應(yīng)降價多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1.有下列結(jié)論:①b2=4ac ②abc>0 ③a>c ④4a+c>2b.其中結(jié)論正確的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:拋物線y=x2+bx+c與直線y=﹣x﹣1交于點A,B.其中點B的橫坐標(biāo)為2.點P(m,n)是線段AB上的動點.
(1)求拋物線的表達式;
(2)過點P的直線垂直于x軸,交拋物線于點Q,求線段PQ的長度l與m的關(guān)系式,m為何值時,PQ最長?
(3)在平角直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點稱為整點,記頂點都是整點的四邊形為整點四邊形,在(2)的情況下,在平面內(nèi)找出所有符合要求的整點R,使P、Q、B、R為整點平行四邊形,請直接寫出整點R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)利用寒假30天時間販賣草莓,了解到某品種草莓成本為10元/千克,在第天的銷售量與銷售單價如下(每天內(nèi)單價和銷售量保持一致):
銷售量(千克) | |
銷售單價(元/千克) | 當(dāng)時, |
當(dāng)時, |
設(shè)第天的利潤元.
(1)請計算第幾天該品種草莓的銷售單價為25元/千克?
(2)這30天中,該同學(xué)第幾天獲得的利潤最大?最大利潤是多少?注:利潤=(售價-成本)×銷售量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,并完成相應(yīng)的任務(wù).
古希臘的幾何學(xué)家海倫在他的著作《度量論》一書中給出了利用三角形三邊之長求面積的公式﹣﹣﹣﹣海倫公式S=(其中a,b,c是三角形的三邊長,,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計算:
∵a=3,b=4,c=5
∴=6
∴S===6
事實上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.
根據(jù)上述材料,解答下列問題:
如圖,在△ABC中,BC=7,AC=8,AB=9
(1)用海倫公式求△ABC的面積;
(2)如圖,AD、BE為△ABC的兩條角平分線,它們的交點為I,求△ABI的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com