【題目】如圖,在中,,以AB為直徑的圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長(zhǎng)AE至點(diǎn)F,使,連接FB,FC

求證:四邊形ABFC是菱形;

,,求半圓和菱形ABFC的面積.

只用一把無(wú)刻度的直尺,作出菱形AB上的高CH

【答案】1)證明見(jiàn)解析;(2.(3)見(jiàn)解析.

【解析】

1)先根據(jù)等腰三角形三線合一得出CE=BE,再根據(jù)對(duì)角線相互平分的四邊形是平行四邊形,證明是平行四邊形,再根據(jù)鄰邊相等的平行四邊形是菱形即可證明;
2)設(shè)CD=x,連接BD.利用勾股定理構(gòu)建方程即可解決問(wèn)題;
3)如圖,設(shè)BDAEK,作直線CKABH.根據(jù)三角形的高相交于一點(diǎn)可得線段CH即為所求.

證明:是直徑,

,

,

,

,

四邊形ABFC是平行四邊形,

,

四邊形ABFC是菱形.

設(shè)連接BD

是直徑,

,

,

,

解得舍棄

,

如圖,設(shè)BDAEK,作直線CKAB

是直徑,

,

三角形的高相交于一點(diǎn)

線段CH即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABC的頂點(diǎn)A在拋物線yx2上,頂點(diǎn)B,Cx軸的正半軸上,且點(diǎn)B的坐標(biāo)為(1,0)

(1)求點(diǎn)D坐標(biāo);

(2)將拋物線yx2適當(dāng)平移,使得平移后的拋物線同時(shí)經(jīng)過(guò)點(diǎn)B與點(diǎn)D,求平移后拋物線解析式,并說(shuō)明你是如何平移的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知邊長(zhǎng)為5的菱形ABCD中,對(duì)角線AC長(zhǎng)為6,點(diǎn)E在對(duì)角線BD上且tanEAC=,則BE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,蘭博基尼某車型車門設(shè)計(jì)屬于剪刀門設(shè)計(jì),即車門關(guān)閉時(shí)位置如圖中四邊形ABCD,車門打開(kāi)是繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至CDAD垂直,已知四邊形ABCD與四邊形ABCD′在同一平面,若ADBC,∠D45°,∠DAB′=30°,CD60cm,則AB的長(zhǎng)約為( 。1.7

A. 21cmB. 42cmC. 51cmD. 60cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD和四邊形AEFG均為菱形,且∠EAG=∠ABC

1)如圖1,點(diǎn)G在線段AD上,已知AD5AG3,且cosABC ,連接AF,BF,求BF的長(zhǎng);

2)如圖2,點(diǎn)G在菱形ABCD內(nèi)部,連接BG、DE,若點(diǎn)MDE中點(diǎn),試猜想AMBG之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將邊長(zhǎng)為4的等邊ABC的邊BC向兩端延長(zhǎng),使∠MAN120°

1)求證:MAB∽△ANC

2)若CN4MB,求線段CN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解九年級(jí)男同學(xué)的體育考試準(zhǔn)備情況,隨機(jī)抽取部分男同學(xué)進(jìn)行100米跑步測(cè)試,按照成績(jī)分為優(yōu)秀、良好、合格與不合格四個(gè)等級(jí),其中不合格學(xué)生占抽取學(xué)生總數(shù)的,學(xué)校繪制了如下不完整的統(tǒng)計(jì)圖:

通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

校九年級(jí)有300名男生,請(qǐng)估計(jì)其中成績(jī)未達(dá)到良好和優(yōu)秀的有多少?

某班甲、乙兩位成績(jī)優(yōu)秀的同學(xué)被選中參加即將舉行的學(xué)校運(yùn)動(dòng)會(huì)1000米跑步比賽、預(yù)賽分為A、B、C三組進(jìn)行,選手由抽簽確定分組,甲、乙兩人恰好分在同一組的概率是多少?請(qǐng)畫(huà)出樹(shù)狀圖或列表加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“知識(shí)改變命運(yùn),科技繁榮祖國(guó)”,我市中小學(xué)每年都要舉辦一屆科技運(yùn)動(dòng)會(huì),下圖為我市某校今年參加科技運(yùn)動(dòng)會(huì)航模比賽(包括空模、海模、車模、建模四個(gè)類別)的參賽人數(shù)統(tǒng)計(jì)圖:

(1)該校參加車模、建模比賽的人數(shù)分別是 人和 人:

(2)該校參加航模比賽的總?cè)藬?shù)是 人,空模所在扇形的圓心角的度數(shù)是 ,并把條形統(tǒng)計(jì)圖補(bǔ)充完整.

(3)從全市中小學(xué)參加航模比賽選手中隨機(jī)抽取80人,其中有32人獲獎(jiǎng),今年我市中小學(xué)參加航模比賽人共有2485人,請(qǐng)你估算今年參加航模比賽的獲獎(jiǎng)人數(shù)約是多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD,點(diǎn)M是邊BA延長(zhǎng)線上的動(dòng)點(diǎn)(不與點(diǎn)A重合),且AM<AB,△CBE由DAM平移得到.若過(guò)點(diǎn)E作EHAC,H為垂足,則有以下結(jié)論:點(diǎn)M位置變化,使得DHC=60°時(shí),2BE=DM;無(wú)論點(diǎn)M運(yùn)動(dòng)到何處,都有DM=HM;③無(wú)論點(diǎn)M運(yùn)動(dòng)到何處,CHM一定大于135°.其中正確結(jié)論的序號(hào)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案