【題目】疫情爆發(fā),某企業(yè)準(zhǔn)備轉(zhuǎn)型生產(chǎn)口罩.該企業(yè)在市場上物色到兩種生產(chǎn)口罩的設(shè)備,若采購2臺型設(shè)備,5臺型設(shè)備則共需要430萬元;若采購5臺型設(shè)備,2臺型設(shè)備則共需要550萬元.已知型設(shè)備每臺每天可以生產(chǎn)19萬片口罩;型設(shè)備每臺每天可以生產(chǎn)8萬片口罩.
(1)求、兩型設(shè)備的采購單價(jià)分別是多少萬元/臺?
(2)該企業(yè)準(zhǔn)備采購、兩型設(shè)備共10臺,但能用來采購設(shè)備的資金不超過700萬元,那么如何安排采購方案,用這些設(shè)備每天生產(chǎn)的口罩最多?每天最多可生產(chǎn)多少萬片口罩?
【答案】(1)型設(shè)備的采購單價(jià)是90萬元/臺、型設(shè)備的采購單價(jià)是50萬元/臺;(2)采購5臺型設(shè)備,5臺型設(shè)備時,每天生產(chǎn)的口罩最多,每天最多可以生產(chǎn)135萬片口罩.
【解析】
(1)設(shè)型設(shè)備的采購單價(jià)是萬元/臺、型設(shè)備的采購單價(jià)是萬元/臺,依據(jù)“采購2臺型設(shè)備,5臺型設(shè)備則共需要430萬元;采購5臺型設(shè)備,2臺型設(shè)備則共需要550萬元”,即可列出關(guān)于x,y的二元一次方程組,解之即可.
(2)設(shè)購買臺型設(shè)備,臺型設(shè)備,依據(jù)采購設(shè)備的資金不超過700萬元,列出不等式得到m的范圍,依題意設(shè)這些設(shè)備每天可生產(chǎn)萬片口罩,列出與m的關(guān)系式,由一次函數(shù)的性質(zhì),并結(jié)合m的范圍即可求解.
(1)解:設(shè)型設(shè)備的采購單價(jià)是萬元/臺、型設(shè)備的采購單價(jià)是萬元/臺,
則解得:
答:型設(shè)備的采購單價(jià)是90萬元/臺、型設(shè)備的采購單價(jià)是50萬元/臺
(2)解:設(shè)購買臺型設(shè)備,臺型設(shè)備,
這些設(shè)備每天可生產(chǎn)萬片口罩
解得:,即:
∵,∴隨著的增大而增大
∴當(dāng)時,(萬片),
此時,(臺)
答:采購5臺型設(shè)備,5臺型設(shè)備時,每天生產(chǎn)的口罩最多,
每天最多可以生產(chǎn)135萬片口罩.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年“五一”節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時間.設(shè)他從山腳出發(fā)后所用時間為t(分鐘),所走路程為s(米),s與t之間的函數(shù)關(guān)系如圖所示,則下列說法中,錯誤的是( )
A. 小明中途休息用了20分鐘 B. 小明休息前爬山的速度為每分鐘60米
C. 小明在上述過程中所走路程為7 200米 D. 小明休息前后爬山的平均速度相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若平面直角坐標(biāo)系內(nèi)的點(diǎn)滿足橫、縱坐標(biāo)都為整數(shù),則把點(diǎn)叫做 “整點(diǎn)”.例如:、都是“整點(diǎn)”,拋物線()與軸交于兩點(diǎn),若該拋物線在之間的部分與線段所圍成的區(qū)域(包括邊界)恰有七個整點(diǎn),則的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對“隔離直線”給出如下定義:點(diǎn)是圖形上的任意一點(diǎn),點(diǎn)是圖形上的任意一點(diǎn),若存在直線:滿足且,則稱直線:是圖形與的“隔離直線”,如圖,直線:是函數(shù)的圖像與正方形的一條“隔離直線”.
(1)在直線①,②,③,④中,是圖函數(shù)的圖像與正方形的“隔離直線”的為 .
(2)如圖,第一象限的等腰直角三角形的兩腰分別與坐標(biāo)軸平行,直角頂點(diǎn)的坐標(biāo)是,⊙O的半徑為,是否存在與⊙O的“隔離直線”?若存在,求出此“隔離直線”的表達(dá)式:若不存在,請說明理由;
(3)正方形的一邊在軸上,其它三邊都在軸的左側(cè),點(diǎn)是此正方形的中心,若存在直線是函數(shù)的圖像與正方形的“隔離直線”,請直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)在軸的正半軸上,將線段繞點(diǎn)順時針旋轉(zhuǎn)90°得到,過點(diǎn)作軸的垂線,垂足為,連接交軸于點(diǎn).
(1)當(dāng)點(diǎn)在第三象限時,求實(shí)數(shù)的取值范圍;
(2)在(1)的條件下,設(shè),當(dāng)取得最大值時,求圖象經(jīng)過兩點(diǎn)的二次函數(shù)的解析式;
(3)在(2)的條件下,將直線向上平移個單位后與二次函數(shù)的圖象交點(diǎn)的橫坐標(biāo)為,若,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2-4ax+b交x軸正半軸于A、B兩點(diǎn),交y軸正半軸于C,且OB=OC=3.
(1) 求拋物線的解析式;
(2) 如圖1,D為拋物線的頂點(diǎn),P為對稱軸左側(cè)拋物線上一點(diǎn),連接OP交直線BC于G,連GD.是否存在點(diǎn)P,使?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3) 如圖2,將拋物線向上平移m個單位,交BC于點(diǎn)M、N.若∠MON=45°,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,分別將弧AB、弧CD沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過圓心,若⊙O的半徑為4,則四邊形ABCD的面積是__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車專賣店經(jīng)銷某種型號的汽車.已知該型號汽車的進(jìn)價(jià)為15萬元/輛,經(jīng)銷一段時間后發(fā)現(xiàn):當(dāng)該型號汽車售價(jià)定為25萬元/輛時,平均每周售出8輛;售價(jià)每降低0.5萬元,平均每周多售出1輛.
(1)當(dāng)售價(jià)為22萬元/輛時,求平均每周的銷售利潤.
(2)若該店計(jì)劃平均每周的銷售利潤是90萬元,為了盡快減少庫存,求每輛汽車的售價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展“我最喜愛的一項(xiàng)體育活動”調(diào)查,要求每名學(xué)生必選且只能選一項(xiàng).現(xiàn)隨機(jī)抽查了部分學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖.
抽取的學(xué)生最喜歡體育活動的條形統(tǒng)計(jì)圖
抽取的學(xué)生最喜歡體育活動的扇形統(tǒng)計(jì)圖
請結(jié)合以上信息解答下列問題:
(1)在這次調(diào)查中一共抽查了_____學(xué)生,扇形統(tǒng)計(jì)圖中“乒乓球”所對應(yīng)的圓心角為_____度,并請補(bǔ)全條形統(tǒng)計(jì)圖;
(2)己知該校共有1200名學(xué)生,請你估計(jì)該校最喜愛跑步的學(xué)生人數(shù);
(3)若在“排球、足球、跑步、乒乓球”四個活動項(xiàng)目任選兩項(xiàng)設(shè)立課外興趣小組,請用列表法或畫樹狀圖的方法求恰好選中“排球、乒乓球”這兩項(xiàng)活動的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com