【題目】如圖所示,下列條件中,能判斷直線L1L2的是( )

A. ∠2=∠3 B. ∠l=∠3 C. ∠4+∠5=180 D. ∠2=∠4

【答案】B

【解析】平行線的判定定理有:①同位角相等,兩直線平行;②內(nèi)錯(cuò)角相等,兩直線平行;③同旁內(nèi)角互補(bǔ),兩直線平行.根據(jù)以上內(nèi)容判斷即可.

A.2和∠3不是直線L1、L2被第三條直線所截形成的角,故不能判斷直線L1L2;

B.∵∠1=3,L1∥L2 (同位角相等兩直線平行);

C.4、5是直線L1、L2被第三條直線所截形成的同位角,故∠4+5=180不能判斷直線L1L2.

D.2、4是直線L1、L2被第三條直線所截形成的同旁內(nèi)角,故∠2=4不能判斷直線L1∥L2.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將長(zhǎng)方形ABCD沿著對(duì)角線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)E.

(1)若∠DBC=25°,求∠ADC′的度數(shù);

(2)若AB=4,AD=8,求△BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:直線AB∥CD,點(diǎn)E,F分別在直線AB,CD上,點(diǎn)M為平面內(nèi)一點(diǎn).

(1)如圖1,∠AEM,∠M,∠CFM的數(shù)量關(guān)系為 ;(直接寫(xiě)出答案)

(2)如圖2,∠AEM=48°,MN平分∠EMF,F(xiàn)H平分∠MFC,MK∥FH,求∠NMK的度數(shù);

(3)如圖3,點(diǎn)P為CD上一點(diǎn),∠BEF=n·∠MEF,∠PMQ=n·∠PME,過(guò)點(diǎn)M作MN∥EF交AB于點(diǎn)N,請(qǐng)直接寫(xiě)出∠PMQ,∠BEF,∠PMN之間的數(shù)量關(guān)系.(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知長(zhǎng)方形ABCD,AB=CD, BC=AD,P為長(zhǎng)方形ABCD邊上的動(dòng)點(diǎn)動(dòng)點(diǎn)PA出發(fā),沿著A→B→C→D運(yùn)動(dòng)到D點(diǎn)停止速度為2cm/s,設(shè)點(diǎn)P用的時(shí)間為xAPD的面積為y,yx的關(guān)系如圖2所示.

(1)AB=________cm, BC=______cm;

(2)寫(xiě)出時(shí),yx之間的關(guān)系式

(3)當(dāng)y=12時(shí),求x的值;

(4)當(dāng)P在線段BC上運(yùn)動(dòng)時(shí),是否存在點(diǎn)P使得APD的周長(zhǎng)最小,若存在,求出此時(shí)∠APD的度數(shù),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

(1)

(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的面積為36cm2 , 點(diǎn)E在BC上,點(diǎn)G在AB的延長(zhǎng)線上,四邊形EFGB是正方形,以點(diǎn)B為圓心,BC的長(zhǎng)為半徑畫(huà) ,連接AF,CF,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都為l.在方格紙中將三角形ABC經(jīng)過(guò)一次平移后得到三角形A'B'C,圖中標(biāo)出了點(diǎn)C的對(duì)應(yīng)點(diǎn)C'.

(1)請(qǐng)畫(huà)出平移后的三角形A'B'C’;

(2)連接AA’,CC’,則這兩條線段之間的關(guān)系是 ;

(3)建立合適的平面直角坐標(biāo)系,并寫(xiě)出A'、B'、C'的坐標(biāo);

(4)三角形A'B'C'的面積為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,以△ABC的邊AB為直徑的⊙O交邊BC于點(diǎn)E,過(guò)點(diǎn)E作⊙O的切線交AC于點(diǎn)D,且ED⊥AC.
(1)試判斷△ABC的形狀,并說(shuō)明理由;
(2)如圖2,若線段AB、DE的延長(zhǎng)線交于點(diǎn)F,∠C=75°,CD=2﹣ ,求⊙O的半徑和BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社會(huì)實(shí)踐活動(dòng)小組實(shí)地測(cè)量?jī)砂痘ハ嗥叫械囊欢魏拥膶挾,在河的北岸邊點(diǎn)A處,測(cè)得河的南岸邊點(diǎn)B在其南偏東45°方向,然后向北走20米到達(dá)C點(diǎn),測(cè)得點(diǎn)B在點(diǎn)C的南偏東33°方向,求出這段河的寬度(結(jié)果精確到1米,參考數(shù)據(jù)sin33°≈0.54,cos33°≈0.84,tan33°≈0.65, ≈1.41)

查看答案和解析>>

同步練習(xí)冊(cè)答案