【題目】(1)如圖1,已知ABCD,求證:EGF=AEG+CFG

(2)如圖2,已知ABCD,AEF與∠CFE的平分線(xiàn)交于點(diǎn)G.猜想∠G的度數(shù)。證明你的猜想

(3)如圖3,已知ABCD,EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,G=95°,求∠H的度數(shù).

【答案】1)見(jiàn)解析;(2)∠G90°;證明見(jiàn)解析;(3)∠H85°.

【解析】

1)過(guò)點(diǎn)GGHAB,根據(jù)兩直線(xiàn)平行內(nèi)錯(cuò)角相等可證得結(jié)論;

2)由(1)得∠EGF=∠AEG+∠CFG,根據(jù)EG、FG分別平分∠AEF和∠CFE,得到∠AEF2AEG,∠CFE2CFG,由于ABCD得到∠AEF+∠CFE180°,于是得到2AEG2CFG180°,即可得到結(jié)論;

3)由(1)得∠G=∠AEG+∠CFG,∠H=∠AEH+∠CFH,根據(jù)EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,分別得到∠AEG=∠GEH=∠HEFAEF,∠CFH=∠HFG=∠EFGCFE,結(jié)合∠AEF+∠CFE180°,于是可求出∠CFE105°,∠AEF75°,代入∠HAEFCFE,計(jì)算即可得到結(jié)論.

解:(1)如圖1,

過(guò)點(diǎn)GGHAB

∴∠EGH=∠AEG

ABCD,

GHCD

∴∠FGH=∠CFG

∴∠EGH+∠FGH=∠AEG+∠CFG

即∠EGF=∠AEG+∠CFG;

2)猜想:∠G90°

證明:如圖2,

由(1)中的結(jié)論得:∠EGF=∠AEG+∠CFG

EG、FG分別平分∠AEF和∠CFE,

∴∠AEF2AEG,∠CFE2CFG,

ABCD,

∴∠AEF+∠CFE180°

2AEG2CFG180°,

∴∠AEG+∠CFG90°,

∴∠G90°

3)解:如圖3,

EG平分∠AEHEH平分∠GEF,FH平分∠CFG,FG平分∠HFE,

∴∠AEG=∠GEH=∠HEFAEF,∠CFH=∠HFG=∠EFGCFE

由(1)可知,∠G=∠AEG+∠CFG,∠H=∠AEH+∠CFH,

∴∠GAEFCFE95°,

(∠AEF+∠CFE)+CFE95°

ABCD,

∴∠AEF+∠CFE180°,

∴∠CFE105°,

∴∠AEF75°,

∴∠HAEFCFE×75°×105°85°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)P是等邊△ABC中一點(diǎn),線(xiàn)段AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°到AQ,連接PQ、QC

1)求證:PB=QC;

2)若∠APB=150°,PA=9PB=12,求PC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有A型、B型、C型三種不同的紙板,其中A型:邊長(zhǎng)為a厘米的正方形;B型:長(zhǎng)為a厘米,寬為1厘米的長(zhǎng)方形;C型:邊長(zhǎng)為1厘米的正方形.

1A2塊,B4塊,C4塊,此時(shí)紙板的總面積為 平方厘米;

①?gòu)倪@10塊紙板中拿掉1A型紙板,剩下的紙板在不重疊的情況下,可以緊密的排出一個(gè)大正方形,這個(gè)大正方形的邊長(zhǎng)為 厘米;

②從這10塊紙板中拿掉2塊同類(lèi)型的紙板,使得剩下的紙板在不重疊的情況下,可以緊密地排出兩個(gè)相同的大正方形,請(qǐng)問(wèn)拿掉的是2塊哪種類(lèi)型的紙板?(計(jì)算說(shuō)明)

2A12塊,B12塊,C4塊,從這28塊紙板中拿掉1塊紙板,使得剩下的紙板在不重疊的情況下,可以緊密地排出三個(gè)相同形狀的大正方形,則大正方形的邊長(zhǎng)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖1,四邊形ABCD是平行四邊形,E,F是對(duì)角線(xiàn)AC上的兩點(diǎn),AE=CF.

1)求證:四邊形DEBF是平行四邊形;

2)如果AE=EF=FC,請(qǐng)直接寫(xiě)出圖中2所有面積等于四邊形DEBF的面積的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點(diǎn)分別落在軸、軸正半軸上,點(diǎn)在邊上,點(diǎn)在邊上,且,已知,

1)求點(diǎn)的坐標(biāo);

2)點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn)為點(diǎn),點(diǎn)點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿射線(xiàn)運(yùn)動(dòng),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,的面積為,用含的代數(shù)式表示;

3)在(2)的條件下,點(diǎn)為平面內(nèi)一點(diǎn),點(diǎn)在線(xiàn)段上運(yùn)動(dòng)時(shí),作的平分線(xiàn)交軸于點(diǎn),為何值時(shí),四邊形為矩形?并求此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖, AF平分∠BAC,BC⊥AF, 垂足為E,點(diǎn)D與點(diǎn)A關(guān)于點(diǎn)E對(duì)稱(chēng),PB分別與線(xiàn)段CF,AF相交于PM

1)求證:AB=CD;

2)若∠BAC=2∠MPC,請(qǐng)你判斷∠F∠MCD的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】.二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖,給出下列四個(gè)結(jié)論:①4acb20;4a+c2b;3b+2c0;mam+b+bam≠﹣1),其中正確結(jié)論的個(gè)數(shù)是( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:某玩具廠(chǎng)生產(chǎn)一種玩具,按照控制固定成本降價(jià)促銷(xiāo)的原則,使生產(chǎn)的玩具能夠及時(shí)售出,據(jù)市場(chǎng)調(diào)查:每個(gè)玩具按480元銷(xiāo)售時(shí),每天可銷(xiāo)售160個(gè);若銷(xiāo)售單價(jià)每降低1元,每天可多售出2個(gè),已知每個(gè)玩具的固定成本為360元,問(wèn)這種玩具的銷(xiāo)售單價(jià)為多少元時(shí),廠(chǎng)家每天可獲利潤(rùn)最多?最多獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市防洪大堤的橫截面如圖所示,已知AEBC,背水坡AB的坡度AB=26米.身高1.8米的小明豎直站立于A點(diǎn),眼睛在M點(diǎn)處測(cè)得豎立的高壓電線(xiàn)桿頂端D點(diǎn)的仰角為24°,已知地面CB30則高壓電線(xiàn)桿CD的高度約為(  。ńY(jié)果精確到整數(shù),參考數(shù)據(jù)sin24°≈0.40cos24°≈0.91,tan24°≈0.45

A. 33 B. 34 C. 35 D. 36

查看答案和解析>>

同步練習(xí)冊(cè)答案