【題目】已知,點P是等邊△ABC中一點,線段AP繞點A逆時針旋轉60°到AQ,連接PQ、QC

1)求證:PB=QC;

2)若∠APB=150°,PA=9,PB=12,求PC的長度.

【答案】1)詳見解析;(2PC=15

【解析】

1)利用旋轉的性質找到證明△BAP≌△CAQ,,然后利用全等三角形的性質即可證明;

2)利用等邊三角形的性質和勾股定理解答即可.

1)證明:∵線段AP繞點A逆時針旋轉60°到AQ,

AP=AQ,∠PAQ=60°,

∴△APQ是等邊三角形,

∴∠PAC+CAQ=60°,

∵△ABC是等邊三角形,

∴∠BAP+PAC=60°,AB=AC,

∴∠BAP=CAQ,

在△BAP和△CAQ中,BA=CA,∠BAP=CAQ,AP=AQ

∴△BAP≌△CAQSAS);

PB=QC;

2)解:∵△APQ是等邊三角形,

AP=PQ=9,∠AQP=60°,

∵∠APB=150°,

∴∠PQC=150°-60°=90°,

PB=QC=12,

∴△PQC是直角三角形,

PC=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學1000名學生參加了“環(huán)保知識競賽”,為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取整數(shù),滿分為100分)作為樣本進行統(tǒng)計,并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:

成績分組

頻數(shù)

頻率

50x60

8

0.16

60x70

12

a

70x80

0.5

80x90

3

0.06

90x90

b

c

合計

1

1)寫出,的值;

2)請估計這1000名學生中有多少人的競賽成績不低于70分;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子里,裝有三個分別寫有數(shù)字12,3的小球,它們的形狀、大小、質地等完全相同,先從盒子里隨機取出一個小球,記下數(shù)字后放回盒子,搖勻后再隨機取出一個小球,記下數(shù)字.請你用畫樹形圖或列表的方法,求下列事件的概率:

1)兩次取出小球上的數(shù)字相同的概率;

2)兩次取出小球上的數(shù)字之和大于3的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O為正方形ABCD的中心,BE平分∠DBCDC于點E,延長BC到點F,使FC=EC,連結DFBE的延長線于點H,連結OHDC于點G,連結HC.則以下四個結論中:①OHBF,②GH=BC,③BF=2OD,④∠CHF=45°.正確結論的個數(shù)為( )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】光明電器超市銷售每臺進價分別為190元、160元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

2

6

1840

第二周

5

7

2840

(進價、售價均保持不變,利潤=銷售收入-進貨成本)

1)求A、B兩種型號的電風扇的銷售單價;

2)若超市準備再采購這兩種型號的電風扇共40臺,這40臺電風扇全部售出后,若利潤不低于2660元,求A種型號的電風扇至少要采購多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)經(jīng)過點 經(jīng)過點A(﹣1,0),B(5,﹣6),C(6,0)

(1)求拋物線的解析式;

(2)如圖,在直線AB下方的拋物線上是否存在點P使四邊形PACB的面積最大?若存在,請求出點P的坐標;若不存在,請說明理由;

(3)若點Q為拋物線的對稱軸上的一個動點,試指出△QAB為等腰三角形的點Q一共有幾個?并請求出其中某一個點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知 A(0,a)B(b,0)a、b 滿足.a+b=4a-b= 12,

1)求 ab 的值;

2)在坐標軸上找一點 D,使三角形 ABD 的面積等于三角形 OAB 面積的一半, D 點坐標;

3)作∠BAO 平分線與∠ABC 平分線 BE 的反向延長線交于 P 點,求∠P 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰ABC中,點DE分別是邊AB、AC上的兩點(點D不與點A、 B重合),且DEBC,以DE為一邊,在四邊形DBCE的內部作正方形DEFG,已知AB=AC=5,BC=6.

(1)試求ABC的面積;

(2)當GFBC重合時,求正方形DEFG的邊長;

(3)若BG的長度等于正方形DEFG的邊長,試求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,已知ABCD,求證:EGF=AEG+CFG

(2)如圖2,已知ABCD,AEF與∠CFE的平分線交于點G.猜想∠G的度數(shù)。證明你的猜想

(3)如圖3,已知ABCD,EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,G=95°,求∠H的度數(shù).

查看答案和解析>>

同步練習冊答案