【題目】“十三五”以來,山西省共解決372個村、35.8萬農(nóng)村人口的飲水型氟超標(biāo)問題,讓農(nóng)村群眾真正喝上干凈水、放心水、安全水.某公司抓住商機(jī),根據(jù)市場需求代理,兩種型號的凈水器,已知每臺型凈水器比每臺型凈水器進(jìn)價多200元,用5萬元購進(jìn)型凈水器與用4.5萬元購進(jìn)型凈水器的數(shù)量相等.
(1)求每臺型,型凈水器的進(jìn)價各是多少元?
(2)該公司計劃購進(jìn),兩種型號的凈水器共55臺進(jìn)行試銷,其中型凈水器為臺,購買兩種凈水器的總資金不超過10.8萬元.則最多可購進(jìn)型號凈水器多少臺?
【答案】(1)每臺型凈水器的進(jìn)價是 2000 元,每臺型凈水器的進(jìn)價是 1800 元;(2)最多可購進(jìn)型凈水器 45 臺.
【解析】
(1)設(shè)每臺型凈水器的進(jìn)價是元,根據(jù)題意找到等量關(guān)系列出分式方程,再解方程即可得解;
(2)設(shè)購進(jìn)型凈水器臺,根據(jù)題意找到不等量關(guān)系列出一元一次不等式,再解不等式求出最大整數(shù)解即可.
解:(1)設(shè)每臺型凈水器的進(jìn)價是元
根據(jù)題意,得
解得
經(jīng)檢驗,是原分式方程的解,且符合題意
∴
答:每臺型凈水器的進(jìn)價是元,每臺型凈水器的進(jìn)價是元;
(2)設(shè)購進(jìn)型凈水器臺,則購進(jìn)型凈水器臺
依題意得,
解得
∵取最大整數(shù)解
∴
答:最多可購進(jìn)型凈水器臺.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“分塊計數(shù)法”:對有規(guī)律的圖形進(jìn)行計數(shù)時,有些題可以采用“分塊計數(shù)”的方法.
例如:圖1有6個點,圖2有12個點,圖3有18個點,……,按此規(guī)律,求圖10、圖n有多少個點?
我們將每個圖形分成完全相同的6塊,每塊黑點的個數(shù)相同(如圖),這樣圖1中黑點個數(shù)是6×1=6個;圖2中黑點個數(shù)是6×2=12個:圖3中黑點個數(shù)是6×3=18個;所以容易求出圖10、圖n中黑點的個數(shù)分別是 、 .
請你參考以上“分塊計數(shù)法”,先將下面的點陣進(jìn)行分塊(畫在答題卡上),再完成以下問題:
(1)第5個點陣中有 個圓圈;第n個點陣中有 個圓圈.
(2)小圓圈的個數(shù)會等于271嗎?如果會,請求出是第幾個點陣.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,若O為BC邊的中點,則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點P在以DE為直徑的半圓上運(yùn)動,則PF2+PG2的最小值為( 。
A. B. C. 34 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
若該拋物線經(jīng)過點,試求的值及拋物線的頂點坐標(biāo).
求此拋物線的頂點坐標(biāo)(用含的代數(shù)式表示) ,并證明:不論為何值,該拋物線的頂點都在同一條直線上.
直線截拋物線所得的線段長是否為定值?若是,請求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,AB∥CD,∠ABC=60°,AB=BC=4,CD=3.
(1)如圖1,求△BCD的面積;
(2)如圖2,M是CD邊上一點,將線段BM繞點B逆時針旋轉(zhuǎn)60°,可得線段BN,過點N作NQ⊥BC,垂足為Q,設(shè)NQ=n,BQ=m,求n關(guān)于m的函數(shù)解析式.(自變量m的取值范圍只需直接寫出)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:
(3)拓展與運(yùn)用:
正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC,∠B=90°,∠C=30°,O為AC上一點,OA=2,以O(shè)為圓心,以O(shè)A為半徑的圓與CB相切于點E,與AB相交于點F,連接OE、OF,則圖中陰影部分的面積是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,過點作直線,將繞點順時針旋轉(zhuǎn)得到(點的對應(yīng)點分別為).
(1)問題發(fā)現(xiàn)如圖1,若與重合時,則的度數(shù)為____________;
(2)類比探究:如圖2,設(shè)與BC的交點為,當(dāng)為的中點時,求線段的長;
(3)拓展延伸在旋轉(zhuǎn)過程中,當(dāng)點分別在的延長線上時,試探究四邊形的面積是否存在最小值.若存在,直接寫出四邊形的最小面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家在購進(jìn)一款產(chǎn)品時,由于運(yùn)輸成本及產(chǎn)品成本的提高,該產(chǎn)品第 x 天的成本 y(元/件)與 x(天)之間的關(guān)系如圖所示,并連續(xù) 60 天均以 80 元/件的價格出售, 第 x 天該產(chǎn)品的銷售量 z(件)與 x(天)滿足關(guān)系式 z=x+15.
(1)第 25 天,該商家的成本是 元,獲得的利潤是 元;
(2)設(shè)第 x 天該商家出售該產(chǎn)品的利潤為 w 元.
①求 w 與 x 之間的函數(shù)關(guān)系式;
②求出第幾天的利潤最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com