【題目】如圖,△ABC中,AC=BC,點D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分線CF于點F.
(1)求證:CF∥AB;
(2)若∠CAD=20°,求∠CFD的度數(shù).
【答案】(1)見解析;(2)20°
【解析】
試題分析:(1)根據(jù)三角形的性質(zhì)得到∠B=∠BAC,由三角形外角的性質(zhì)得到∠ACE=∠B+∠BAC,求得∠BAC=,由角平分線的定義得到∠ACF=∠ECF=,等量代換得到∠BAC=∠ACF,根據(jù)平行線的判定定理即可得到結(jié)論;
(2)由等量代換得到∠ACF=∠ADF,根據(jù)三角形的內(nèi)角和得到∠ADF+∠CAD+∠AGD=180°,∠ACF+∠F+∠CGF=180°,由于∠AGD=∠CGF,即可得到結(jié)論.
(1)證明:∵AC=BC,
∴∠B=∠BAC,
∵∠ACE=∠B+∠BAC,
∴∠BAC=,
∵CF平分∠ACE,
∴∠ACF=∠ECF=,
∴∠BAC=∠ACF,
∴CF∥AB;
(2)解:∵∠BAC=∠ACF,∠B=∠BAC,∠ADF=∠B,
∴∠ACF=∠ADF,
∵∠ADF+∠CAD+∠AGD=180°,∠ACF+∠F+∠CGF=180°,
又∵∠AGD=∠CGF,
∴∠F=∠CAD=20°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)的圖像與x軸交于點A(1,0),與y軸交于點B(0,-2).
(1)一次函數(shù)的函數(shù)關(guān)系式;
(2)若直線AB上有一點C,且△BOC的面積為2,求點C 的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣bx+c過點B(3,0),C(0,﹣3),D為拋物線的頂點.
(1)求拋物線的解析式以及頂點坐標(biāo);
(2)點C關(guān)于拋物線y=x2﹣bx+c對稱軸的對稱點為E點,連接BC,BE,求∠CBE的正切值;
(3)在(2)的條件下,點M是拋物線對稱軸上且在CE上方的一點,是否存在點M使△DMB和△BCE相似?若存在,求點M坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是正方形ABCD的對角線BD上的一個動點(不與B、D重合),連結(jié)AP,過點B作直線AP的垂線,垂足為H,連結(jié)DH.若正方形的邊長為4,則線段DH長度的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)決定在八年級陽光體育“大課間”活動中開設(shè)A:實心球,B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動項目.為了了解學(xué)生對四種項目的喜歡情況,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題:
(1)在這項調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)將兩個統(tǒng)計圖補充完整;
(3)若調(diào)查到喜歡“立定跳遠(yuǎn)”的5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=a(x+2)(x﹣4)(a為常數(shù),且a>0)與x軸從左至右依次交于A,B兩點,與y軸交于點C,經(jīng)過點B的直線y=﹣ x+b與拋物線的另一交點為D,且點D的橫坐標(biāo)為﹣5.
(1)求拋物線的函數(shù)表達式;
(2)P為直線BD下方的拋物線上的一點,連接PD、PB,求△PBD面積的最大值;
(3)設(shè)F為線段BD上一點(不含端點),連接AF,一動點M從點A出發(fā),沿線段AF以每秒1個單位的速度運動到F,再沿線段FD以每秒2個單位的速度運動到D后停止,當(dāng)點F的坐標(biāo)是多少時,點M在整個運動過程中用時最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸,y軸分別交于點A(﹣4,0),B(0,3),動點P從點O出發(fā),沿x軸負(fù)方向以每秒1個單位的速度運動,同時動點Q從點B出發(fā),沿射線BO方向以每秒2個單位的速度運動,過點P作PC⊥AB于點C,連接PQ,CQ,以PQ,CQ為鄰邊構(gòu)造平行四邊形PQCD,設(shè)點P運動的時間為t秒.
(1)當(dāng)點Q在線段OB上時,用含t的代數(shù)式表示PC,AC的長;
(2)在運動過程中. ①當(dāng)點D落在x軸上時,求出滿足條件的t的值;
②若點D落在△ABO內(nèi)部(不包括邊界)時,直接寫出t的取值范圍;
(3)作點Q關(guān)于x軸的對稱點Q′,連接CQ′,在運動過程中,是否存在某時刻使過A,P,C三點的圓與△CQQ′三邊中的一條邊相切?若存在,請求出t的值;若不存在,請說明理由.#D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王老師的數(shù)學(xué)課采用小組合作學(xué)習(xí)的方式,把班上40名學(xué)生分成若干個小組.如果要求每小組只能是5人或6人,那么分組方案有( )
A. 4種 B. 3種 C. 2種 D. 1種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別是AB、AC的中點,連接DE并延長至點F,使EF=DE,連接AF、DC.求證:四邊形ADCF是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com