【題目】已知,在平面直角坐標系中,拋物線軸交于,兩點(點在點的左側(cè)),頂點為

1)求點和點的坐標;

2)定義“雙拋圖形”:直線將拋物線分成兩部分,首先去掉其不含頂點的部分,然后作出拋物線剩余部分關(guān)于直線的對稱圖形,得到的整個圖形稱為拋物線關(guān)于直線的“雙拋圖形”(特別地,當直線恰好是拋物線的對稱軸時,得到的“雙拋圖形”不變).

①當時,拋物線關(guān)于直線的“雙拋圖形”如圖①所示,直線與“雙拋圖形”有________個交點;

②若拋物線關(guān)于直線的“雙拋圖形”與直線恰好有兩個交點,結(jié)合圖象,直接寫出的取值范圍.

【答案】1;(2)①3;②

【解析】

解:(1)令得:,解得,

∵點A在點B的左側(cè),

,

∴拋物線的對稱軸為,

代入拋物線的解析式,得,

;

2)①3;

【解法提示】∵將代入拋物線的解析式得:

∴拋物線與y軸交點坐標為,

如解圖,作直線,

由圖象可知:直線L雙拋圖形3個交點.

.

【解法提示】將代入得:,解得.

由函數(shù)圖象可知:當時,拋物線L關(guān)于直線L雙拋圖形與直線恰好有兩個交點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】脫貧攻堅工作讓老百姓過上了幸福的生活.如圖①是政府給貧困戶新建的房屋,如圖②是房屋的側(cè)面示意圖,它是一個軸對稱圖形,對稱軸是房屋的高所在的直線.為了測量房屋的高度,在地面上點測得屋頂的仰角為,此時地面上點、屋檐上點、屋頂上點三點恰好共線,繼續(xù)向房屋方向走到達點時,又測得屋檐點的仰角為,房屋的頂層橫梁,,于點(點,在同一水平線上).(參考數(shù)據(jù):,,

1)求屋頂?shù)綑M梁的距離;

2)求房屋的高(結(jié)果精確到).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一個地鐵站入口的雙翼閘機.如圖2,它的雙翼展開時,雙翼邊緣的端點AB之間的距離為10cm,雙翼的邊緣ACBD54cm,且與閘機側(cè)立面夾角∠PCA=∠BDQ30°.當雙翼收起時,可以通過閘機的物體的最大寬度為(  )

A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標系xOy中,一次函數(shù)y=﹣x+5的圖象l1分別與x,y軸交于A,B兩點,正比例函數(shù)的圖象l2l1交于點C(m,4).

(1)求m的值及l2的解析式;

(2)求SAOC﹣SBOC的值;

(3)一次函數(shù)y=kx+1的圖象為l3,且11,l2,l3不能圍成三角形,直接寫出k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,反比例函數(shù)y=kx-1(x>0)的圖象經(jīng)過點A(1,2)和點B(m,n)(m>1),過點B作y軸的垂線,垂足為C.

(1)求該反比例函數(shù)解析式;

(2)當△ABC面積為2時,求點B的坐標.

(3)P為線段AB上一動點(P不與A、B重合),在(2)的情況下,直線y=ax﹣1與線段AB交于點P,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是根據(jù)某市2010年至2014年工業(yè)生產(chǎn)總值繪制的折線統(tǒng)計圖,觀察統(tǒng)計圖獲得以下信息,其中信息判斷錯誤的是(

A.2010年至2014年間工業(yè)生產(chǎn)總值逐年增加

B.2014年的工業(yè)生產(chǎn)總值比前一年增加了40億元

C.2012年與2013年每一年與前一年比,其增長額相同

D.從2011年至2014年,每一年與前一年比,2014年的增長率最大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班男生分成甲、乙兩組進行引體向上的專項訓(xùn)練,已知甲組有名男生,并對兩組男生訓(xùn)練前、后引體向上的個數(shù)進行統(tǒng)計分析,得到乙組男生訓(xùn)練前、后引體向上的平均個數(shù)分別是個和個,及下面不完整的統(tǒng)計表和統(tǒng)計圖.

甲組男生訓(xùn)練前、后引體向上個數(shù)統(tǒng)計表(單位:個)

甲組

男生

男生

男生

男生

男生

男生

平均個數(shù)

眾數(shù)

中位數(shù)

訓(xùn)練前

訓(xùn)練后

根據(jù)以上信息,解答下列問題:

(1) ,

(2)甲組訓(xùn)練后引體向上的平均個數(shù)比訓(xùn)練前增長了 ;

(3)你認為哪組訓(xùn)練效果好?并提供一個支持你觀點的理由;

(4)小華說他發(fā)現(xiàn)了一個錯誤:“乙組訓(xùn)練后引體向上個數(shù)不變的人數(shù)占該組人數(shù)的,所以乙組的平均個數(shù)不可能提高個這么多.”你同意他的觀點嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸正半軸,軸正半軸分別交于點,且為拋物線的頂點.

求拋物線的解析式及點G的坐標;

為拋物線上兩點(在點的左側(cè)) ,且到對稱軸的距離分別為個單位長度和個單位長度,點為拋物線上點之間(含點)的一個動點,求點的縱坐標的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案