【題目】一個(gè)口袋中有9個(gè)紅球和若干個(gè)白球,在不允許將球倒出來數(shù)的前提下,小明采用如下的方法估算其中白球的個(gè)數(shù):從口袋中隨機(jī)摸出一球,記下顏色,然后把它放回口袋中,搖勻后再隨機(jī)摸出一球,記下顏色,小明重復(fù)上述過程共摸了100次,其中40次摸到白球,請回答:

(1)口袋中的白球約有多少個(gè)?

(2)有一個(gè)游樂場,要按照上述紅球、白球的比例配置彩球池,若彩球池里共有1200個(gè)球,則需準(zhǔn)備多少個(gè)紅球?

【答案】(1)小明可估計(jì)口袋中的白球的個(gè)數(shù)是6個(gè).

(2)需準(zhǔn)備720個(gè)紅球。

【解析】試題分析:

(1)用白球的個(gè)數(shù):(白球的個(gè)數(shù)+紅球的個(gè)數(shù))=40:100,列方程求解;

(2)用彩球的總數(shù)乘以,即可得到紅球的個(gè)數(shù).

試題解析

(1)解:設(shè)白球的個(gè)數(shù)為x個(gè),

根據(jù)題意得:

解得:x=6小明可估計(jì)口袋中的白球的個(gè)數(shù)是6個(gè).

(2)1200× =720.

答:需準(zhǔn)備720個(gè)紅球。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑為AB,點(diǎn)C在圓周上(異于A,B),ADCD.

(1)若BC=3,AB=5,求AC的值;

(2)若AC是DAB的平分線,求證:直線CD是O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家在某小區(qū)買了一套住房,該小區(qū)樓房均為平頂式,南北朝向,樓高統(tǒng)一為16(五層),小明在冬至正午測得南樓落在北樓上的影子有3.5米高(如圖),且已知兩樓相距有20,請你幫小明求此時(shí)太陽光與水平線的夾角α的度數(shù)(結(jié)果精確到1°).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O△ABC的外接圓,AB⊙O的直徑,D⊙O上一點(diǎn),OD⊥AC,垂足為E,連接BD.

(1)求證:BD平分∠ABC;

(2) 當(dāng)∠ODB=30°時(shí),求證:BC=OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列材料,然后解決后面的問題:

材料:因?yàn)槎稳?xiàng)式:

x2+(a+b)x+ab=(x+a)(x+b),

所以方程x2+(a+b)x+ab=0可以這樣解:

(x+a)(x+b)=0,x+a=0x+b=0,

∴x1=-a,x2=-b.

問題:

(1)(鐵嶺中考)如果三角形的兩邊長分別是方程x2-8x+15=0的兩個(gè)根,那么連接這個(gè)三角形三邊的中點(diǎn),得到的三角形的周長可能是( )

A.5.5 B.5 C.4.5 D.4

(2)(廣安中考)方程x2-3x+2=0的根是_____;

(3)(臨沂中考)對(duì)于實(shí)數(shù)a,b,定義運(yùn)算“﹡”:a﹡b=,例如4﹡2,因?yàn)?/span>4>2,所以4﹡2=42-4×2=8.x1,x2是一元二次方程x2-5x+6=0的兩個(gè)根,則x1﹡x2=_____;

(4)用因式分解法解方程x2-kx-16=0時(shí),得到的兩根均為整數(shù),則k的值可以為_____;

(5)已知實(shí)數(shù)x滿足(x2-x)2-4(x2-x)-12=0,則代數(shù)式x2-x+1的值為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法錯(cuò)誤的是  

A. 連續(xù)拋一枚均勻硬幣2次必有1次正面朝上

B. 連續(xù)拋一枚均勻硬幣10次都可能正面朝上

C. 大量反復(fù)拋一枚均勻硬幣,平均每100次出現(xiàn)正面朝上50次

D. 通過拋一枚均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的半徑為5,PA是⊙O的一條切線,切點(diǎn)為A,連接PO并延長,交⊙O于點(diǎn)B,過點(diǎn)A作AC⊥PB交⊙O于點(diǎn)C、交PB于點(diǎn)D,連接BC,當(dāng)∠P=30°時(shí),

(1)求弦AC的長;

(2)求證:BC∥PA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀探索:任意給定一個(gè)矩形A,是否存在另一個(gè)矩形B,它的周長和面積分別是已知矩形周長和面積的一半?(完成下列空格)

(1)當(dāng)已知矩形A的邊長分別為61時(shí),小亮同學(xué)是這樣研究的:

設(shè)所求矩形的兩邊分別是xy,由題意得方程組:,消去y化簡得:2x2﹣7x+6=0,

∵△=49﹣48>0,

x1=_____,x2=_______,

∴滿足要求的矩形B存在.

(2)如果已知矩形A的邊長分別為21,請你仿照小亮的方法研究是否存在滿足要求的矩形B.

(3)如果矩形A的邊長為mn,請你研究滿足什么條件時(shí),矩形B存在?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=12,BC=13,△ABD、△ACE、△BCF都是等邊三角形,則四邊形AEFD的面積S=__________.

查看答案和解析>>

同步練習(xí)冊答案