【題目】(思考題)

閱讀下面的情景對(duì)話,然后解答問(wèn)題:

老師:我們新定義一種三角形,兩邊平方和等于第三邊平方的2倍的三角形叫做奇異三角形.

小華:等邊三角形一定是奇異三角形;

小明:那直角三角形是否存在奇異三角形呢?

1)①根據(jù)“奇異三角形”的定義,小紅得出命題:“等邊三角形一定是奇異三角形”,請(qǐng)判斷小紅提出的命題是否正確,并填空:命題 (填“正確”或“不正確”),不要說(shuō)嘛理由.

②若某三角形的三邊長(zhǎng)分別是2、4,則ABC是奇異三角形嗎? (填“是”或“不是”),不要說(shuō)嘛理由.

2)在RtABC中,兩邊長(zhǎng)分別是a=5、c=10,這個(gè)三角形是否是奇異三角形?請(qǐng)說(shuō)明理由.

3)在RtABC中,∠C=90°,AB=c,AC=b,BC=a,且ba,若RtABC是奇異三角形,求abc的值.

【答案】1)①正確,②是;(2)當(dāng)c為斜邊時(shí),RtABC不是奇異三角形;當(dāng)b為斜邊時(shí),RtABC是奇異三角形;(3a:b:c=

【解析】

1)①根據(jù)題中所給的奇異三角形的定義判定命題的真假;

②根據(jù)題中所給的奇異三角形的定義容易得出結(jié)果;

2)分c是斜邊和b是斜邊兩種情況,再根據(jù)勾股定理判斷出所給的三角形是否符合奇異三角形的定義;

3)先根據(jù)勾股定理得出RtABC各邊之間的關(guān)系,再根據(jù)此三角形是奇異三角形可用a表示出b、c的值,即可得出結(jié)果.

(1)①設(shè)等邊三角形的邊長(zhǎng)為a,

,

∴等邊三角形一定是奇異三角形,

等邊三角形一定是奇異三角形,是真命題;

②若某三角形的三邊長(zhǎng)分別是2、4,

根據(jù)奇異三角形的定義可知

∴此三角形為奇異三角形;

(2)①當(dāng)c為斜邊時(shí),RtABC不是奇異三角形;

②當(dāng)b為斜邊時(shí),RtABC是奇異三角形;理由如下:

分兩種情況:

①當(dāng)c為斜邊時(shí), ,

a=b

(),

RtABC不是奇異三角形.

②當(dāng)b為斜邊時(shí)

RtABC是奇異三角形.

(3)RtABC, ,

c>b>a>0

,

RtABC是奇異三角形,

,

,

a:b:c=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 鄭州外國(guó)語(yǔ)中學(xué)為了解學(xué)生課下閱讀所用時(shí)間的情況,從各年級(jí)學(xué)生中隨機(jī)抽查了一部分學(xué)生進(jìn)行統(tǒng)計(jì),下面是針對(duì)此次統(tǒng)計(jì)所制作的不完整的頻數(shù)分布表和頻數(shù)分布直方圖,請(qǐng)根據(jù)圖表信息回答下列問(wèn)題:

組別

時(shí)間段(小時(shí))

頻數(shù)

頻率

1

0≤x0.5

10

0.05

2

0.5≤x1.0

20

0.10

3

1.0≤x1.5

80

b

4

1.5≤x2.0

a

0.35

5

2.0≤x2.5

12

0.06

6

2.5≤x3.0

8

0.04

1)表中a=______b=______

2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

3)樣本中,學(xué)生日閱讀所用時(shí)間的中位數(shù)落在第______組;

4)該校共有學(xué)生3000人,請(qǐng)估計(jì)學(xué)生日閱讀量不少于1.5小時(shí)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,E,F為對(duì)角線BD上的兩點(diǎn),且∠DAE=∠BCF

求證:(1AECF;

2)四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,,,,點(diǎn)是邊上一點(diǎn),過(guò)點(diǎn)分別作的垂線,過(guò)點(diǎn)的垂線,得到矩形和矩形,則這兩個(gè)矩形的面積之和的最大值是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小明在一次測(cè)驗(yàn)中解答的填空題:①若x2 =1,則x=1; ②方程x(x-1)=x-1的解是x=2;③已知三角形兩邊分別為29,第三邊長(zhǎng)是方程x 2-14x+48=0的根,則這個(gè)三角形的周長(zhǎng)是1719;④方程的解是x=3,試卷中每個(gè)填空題5分,最后小明填空題的得分是( 。

A.0B.5C.10D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某校教學(xué)樓與實(shí)驗(yàn)樓的水平間距米,在實(shí)驗(yàn)樓頂部點(diǎn)測(cè)得教學(xué)樓頂部點(diǎn)的仰角是,底部點(diǎn)的俯角是,則教學(xué)樓的高度是____米(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,拋物線y=ax23ax+c(a0)y軸交于點(diǎn)C(0,﹣4)x軸交于點(diǎn)AB,點(diǎn)A的坐標(biāo)為(4,0)

1)求該拋物線的解析式.

2)點(diǎn)D是線段AB上的動(dòng)點(diǎn),過(guò)點(diǎn)DDEAC,交BC于點(diǎn)E,連接CD.當(dāng)△CDE的面積最大時(shí),求點(diǎn)D的坐標(biāo);

3)若平行于x軸的動(dòng)直線l與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)Q(2,0).問(wèn):是否存在這樣的直線l,使得△OQF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)M放在正方形ABCD的對(duì)角線AC(不與點(diǎn)A重合)上滑動(dòng),連結(jié)DM,做MN⊥DM,交直線ABN

(1)求證:DM=MN;

(2)若將(1)中的正方形變?yōu)榫匦,其余條件不變?nèi)鐖D,且DC=2AD,求MD:MN的值;

(3)在(2)中,若CD=nAD,當(dāng)M滑動(dòng)到CA的延長(zhǎng)線上時(shí)(如圖3),請(qǐng)你直接寫(xiě)出MDMN的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小雪和小松分別從家和圖書(shū)館出發(fā),沿同一條筆直的馬路相向而行.小雪開(kāi)始跑步,中途在某地改為步行,且步行的速度為跑步速度的一半,小雪先出發(fā)5分鐘后,小松才騎自行車(chē)勻速回家.小雪到達(dá)圖書(shū)館恰好用了35分鐘.兩人之間的距離ym)與小雪離開(kāi)出發(fā)地的時(shí)間xmin)之間的函數(shù)圖象如圖所示,則當(dāng)小松剛到家時(shí),小雪離圖書(shū)館的距離為____米.

查看答案和解析>>

同步練習(xí)冊(cè)答案