【題目】如圖,拋物線的對稱軸為直線,與軸的一個交點在之間,其部分圖象如圖所示.則下列結論:①;②;③;④為實數(shù));⑤點是該拋物線上的點,則,其中,正確結論的個數(shù)是( )

A.1B.2C.3D.4

【答案】C

【解析】

根據(jù)對稱軸公式可得,即可判斷①;然后根據(jù)拋物線的對稱軸和與x軸的交點坐標即可判斷拋物線與軸的另一個交點在之間,從而判斷②和③;由圖象可得當x=-2時,y取最大值,最大值為,從而判斷④;最后利用拋物線的對稱性和增減性即可判斷⑤.

解:∵拋物線的對稱軸為直線,

解得:b=4a

,故①正確;

∵拋物線與軸的一個交點在之間,

∴拋物線與軸的另一個交點在之間,

∴當x=0時,y0;當x=-1時,y0

∴當x=0時,y=c0,故②正確;

x=-1時,y=abc0

a4ac0

解得:,故③錯誤;

由圖象可得當x=-2時,y取最大值,最大值為

∴當x=t時,

,故④錯誤;

關于直線x=-2的對稱點為

由拋物線可得當x-2時,yx的增大而增大

,故⑤正確

綜上:正確的結論有3

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的點P和⊙C,給出如下定義:若⊙C上存在兩個點A、B,使得點P在射線BC上,且∠APBACB<∠ACB180°),則稱P為⊙C的依附點.

1)當⊙O的半徑為1時,

①已知點D(﹣1,0),E0,﹣2),F2.5,0),在點D、E、F中,⊙O的依附點是 

②點T在直線y=﹣x上,若T為⊙O的依附點,求點T的橫坐標t的取值范圍;

2)⊙C的圓心在x軸上,半徑為2,直線y=﹣x+2x軸、y軸分別交于點MN,若線段MN上的所有點都是⊙C的依附點,直接寫出圓心C的橫坐標m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】橫、縱坐標均為整數(shù)的點稱為格點,如圖,的三個頂點,均為格點,上的點也為格點,用無刻度的直尺作圖:

1)將線段繞點順時針旋轉90°,得到線段,寫出格點的坐標;

2)將線段平移至線段,使點與點重合,直接寫出格點的坐標;

3)畫出線段關于對稱的線段,保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了開展讀書月活動,對學生最喜歡的圖書種類進行了一次抽樣調查,所有圖書分成四類:藝術、文學、科普、其他.隨機調查了該校m名學生(每名學生必選且只能選擇一類圖書),并將調查結果制成如下兩幅不完整的統(tǒng)計圖:

根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

1m   ,n   ,并請根據(jù)以上信息補全條形統(tǒng)計圖;

2)扇形統(tǒng)計圖中,“藝術”所對應的扇形的圓心角度數(shù)是   度;

3)根據(jù)抽樣調查的結果,請你估計該校900名學生中有多少學生最喜歡科普類圖書.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC的邊AB,AC的外側分別作等邊ABD和等邊△ACE,連接DCBE

1)求證:DCBE;

2)若BD3,BC4, BD⊥BC于點B,請求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】去年5月份,我市某中學開展爭做“五好小公民”征文比賽活動,賽后隨機抽取了部分參賽學生的成績,按得分劃分為,,,四個等級,并繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖:

等級

成績(

頻數(shù)(人數(shù))

6

24

9

根據(jù)以上信息,解答以下問題:

1)表中的

2)扇形統(tǒng)計圖中 , ,等級對應的扇形的圓心角為 度;

3)該校準備從上述獲得等級6名學生中選取兩人做為學!拔搴眯」瘛敝驹刚撸阎@6人中有3名男生(用,,表示)和3名女生(用,,表示),請用列表或畫樹狀圖的方法求恰好選取的是的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】陜西省相關文件規(guī)定,西安市實行居民階梯水價制度,對居民用水的基本水價實行三級價差,各階梯水價均為用戶終端水價,具體如下:

第一階梯:年用水量及以下,終端水價為/

第二階梯:年用水量(含),終端水價為/

第三階梯:年用水量以上,終端水價為/

城區(qū)居民階梯水價計量結算周期以年為單位,年用水量累計達到各階梯水量上限后,超出部分執(zhí)行下一階梯水價;年度周期之間水量不結轉,不累計.

設某戶居民2019年的年用水量為,應繳水費為(元).

1)寫出該戶居民2019年的年用水量為含)的之間的函數(shù)表達式.

2)若該戶居民2019年的應繳水費為元,則該戶居民2019年的年用水量為多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】北中環(huán)橋是省城太原的一座跨汾河大橋(如圖1),它由五個高度不同,跨徑也不同的拋物線型鋼拱通過吊橋,拉鎖與主梁相連,最高的鋼拱如圖2所示,此鋼拱(近似看成二次函數(shù)的圖象-拋物線)在同一豎直平面內,與拱腳所在的水平面相交于A,B兩點,拱高為78(即最高點OAB的距離為78),跨徑為90(AB=90),以最高點O為坐標原點,以平行于AB的直線為軸建立平面直角坐標系,則此拋物線鋼拱的函數(shù)表達式為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某年五月,我國南方某省A、B兩市遭受嚴重洪澇災害,鄰近縣市C、D決定調運物資支援A、B兩市災區(qū).已知C市有救災物資240噸,D市有救災物資260噸,現(xiàn)將這些救災物資全部調往AB兩市,A市需要的物資比B市需要的物資少100噸.已知從C市運往AB兩市的費用分別為每噸20元和25元,從D市運往往AB兩市的費用分別為每噸15元和30元,設從D市運往B市的救災物資為x噸.

1A、B兩市各需救災物資多少噸?

2)設C、D兩市的總運費為w元,求wx之間的函數(shù)關系式,并寫出自變量x的取值范圍;

3)經(jīng)過搶修,從D市到B市的路況得到了改善,縮短了運輸時間,運費每噸減少m元(m0),其余路線運費不變.若C、D兩市的總運費的最小值不小于10320元,求m的取值范圍.

查看答案和解析>>

同步練習冊答案