【題目】如圖,在中,,以的各邊作三個正方形,過點作交于點,連接,延長交于點,若為中點,且,則的長為( )
A.8B.C.D.12
【答案】D
【解析】
作HQ⊥AC,交AC的延長線于點Q,則四邊形QEJH是矩形.設(shè)AB=a,AC=b,則CE=a-b.通過證明△QCH≌△ABC, 可證四邊形QEJH是正方形,進(jìn)而可證CE=CK,從而求出a和b的關(guān)系,然保護(hù)根據(jù)即可求出a的值.
解:作HQ⊥AC,交AC的延長線于點Q,則四邊形QEJH是矩形.設(shè)AB=a,AC=b,則CE=a-b.
∵∠QCH+∠ACB=90°,∠ABC+∠ACB=90°,
∴∠QCH=∠ABC,
∵∠Q=∠BAC=90°,CH=BC,
∴△QCH≌△ABC,
∴QH=AC=b,QC=AB=a,
∴QE=QC-CE=b,
∴QH=QE,
∴四邊形QEJH是正方形,
∴∠CEK=∠QEH=45°,
∴△CKE是等腰直角三角形,
∴CE=CK.
∵為中點,
∴CE=CK=,
∴a-b=,
∴b=,
∵,
∴,
∴a=12,即AB的長是12.
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為10,sinA=,點M為邊AD上的一個動點且不與點A和點D重合,點A關(guān)于直線BM的對稱點為點A',點N為線段CA'的中點,連接DN,則線段DN長度的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,在等邊△ABC中,AB=10,BD=4,BE=2,點P從點E出發(fā)沿EA方向運動,連接PD,以PD為邊,在PD右側(cè)按如圖方式作等邊△DPF,當(dāng)點P從點E運動到點A時,點F運動的路徑長是( )
A. 8 B. 10 C. 3π D. 5π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料閱讀:
類比是數(shù)學(xué)中常用的數(shù)學(xué)思想.比如,我們可以類比多位數(shù)的加、減、乘、除的豎式運算方法,得到多項式與多項式的加、減、乘、除的運算方法.
理解應(yīng)用:
(1)請仿照上面的豎式方法計算:;
(2)已知兩個多項式的和為,其中一個多項式為.請用豎式的方法求出另一個多項式.
(3)已知一個長為,寬為的矩形,將它的長增加8.寬增加得到一個新矩形,且矩形的周長是周長的3倍(如圖).同時,矩形的面積和另一個一邊長為的矩形的面積相等,求的值和矩形的另一邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鄭州大學(xué)(ZhengzhouUniversity),簡稱“鄭大”,是中華人民共和國教育部與河南省人民政府共建的全國重點大學(xué),首批“雙一流”世界一流大學(xué)、“211工程”.某學(xué)校興趣小組3人來到鄭州大學(xué)門口進(jìn)行測量,如圖,在大樓AC的正前方有一個舞臺,舞臺前的斜坡DE=4米,坡角∠DEB=41°,小紅在斜坡下的點E處測得樓頂A的仰角為60°,在斜坡上的點D處測得樓頂A的仰角為45°,其中點B,C,E在同一直線上求大樓AC的高度.(結(jié)果精確到整數(shù).參考數(shù)據(jù):≈1.73,sin41°≈0.6,cos41°≈0.75,tan41°≈0.87)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,為上一點,過三點的交于,過點作,交于點.
(1)若是中點,連結(jié),求證:四邊形是平行四邊形
(2)連結(jié),.當(dāng),且,,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020春開學(xué)為防控冠狀病毒,學(xué)生進(jìn)校園必須戴口罩,測體溫,江陰初級中學(xué)開通了三條人工測體溫的通道,每周一分別由王老師、張老師、李老師三位老師給進(jìn)校園的學(xué)生測體溫(每個通道一位老師),周一有小衛(wèi)和小孫兩學(xué)生進(jìn)校園,在3個人工測體溫通道中,可隨機(jī)選擇其中的一個通過.
(1) 求小孫進(jìn)校園時,由王老師測體溫的概率;
(2)求兩學(xué)生進(jìn)校園時,都是王老師測體溫的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作DF⊥AC,垂足為點F.
(1)求證:直線DF是⊙O的切線;
(2)求證:BC2=4CFAC;
(3)若⊙O的半徑為4,∠CDF=15°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知網(wǎng)格的小正方形的邊長均為1,格點三角形ABC如圖所示,請用沒有刻度的直尺畫出滿足條件的圖形
(1)在甲圖中,畫出△,且相似比為2:1,各頂點都在格點上.
(2)在乙圖中,把線段AB三等分.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com